Pregunta
Factor out the greatest common factor. If the greatest common factor is \( 1, j \) just retype the polynomial. \( 8 d^{3}-6 d \)
Ask by Long Vargas. in the United States
Feb 02,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
Factor out \( 2d \) from \( 8d^{3} - 6d \) to get \( 2d(4d^{2} - 3) \).
Solución
The greatest common factor (GCF) of the polynomial \( 8d^{3} - 6d \) is \( 2d \).
Factoring out \( 2d \) from each term:
\[
8d^{3} - 6d = 2d(4d^{2} - 3)
\]
**Final Answer:**
\[
2d \left( 4d^{2} - 3 \right)
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
The greatest common factor (GCF) of the terms \( 8d^3 \) and \( -6d \) is \( 2d \). When we factor this out, we get: \[ 2d(4d^2 - 3). \] Thus, the completely factored form of the polynomial is \( 2d(4d^2 - 3) \). To avoid mistakes while factoring, always start by identifying the coefficients and the variables in each term. Look for the highest power of common variables and the largest numeric factor that can divide all terms evenly. Neglecting these steps can lead to incorrect or incomplete factoring, which can disrupt the solving process!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium