Pregunta
upstudy study bank question image url

Decide which of the two given prices is better and explain why. Storage locker A rents for \( \frac{\$ 32}{y d^{2}} \) per month. Storage locker B rents for \( \frac{\$ 2.13}{f t^{2}} \) per week. (Assume 1 month \( =4 \) weeks.) Click here to view the USCS measurements. Click here to view the USCS to Metric conversions.

Ask by Chavez Garza. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Storage locker B is better because it costs \$8.52 per month, which is less than the \$32 per month for storage locker A.

Solución

To determine which storage locker is better, we need to compare the prices of both lockers. Storage locker A rents for \( \frac{\$ 32}{y d^{2}} \) per month. Storage locker B rents for \( \frac{\$ 2.13}{f t^{2}} \) per week. First, let's convert the prices to a common unit for comparison. Since we are comparing monthly prices, we will convert the weekly price of storage locker B to a monthly price. Given that 1 month = 4 weeks, the monthly price of storage locker B can be calculated as: \[ \text{Monthly price of B} = \frac{\$ 2.13}{f t^{2}} \times 4 \] Now, we can compare the prices of both storage lockers to determine which one is better. Calculate the value by following steps: - step0: Calculate: \(2.13\times 4\) - step1: Multiply the numbers: \(8.52\) The monthly price of storage locker B is \( \$8.52 \) per month. Now, we can compare the prices of both storage lockers: - Storage locker A rents for \( \frac{\$ 32}{y d^{2}} \) per month. - Storage locker B rents for \( \$8.52 \) per month. Since \( \$8.52 \) is less than \( \$32 \), storage locker B is the better option.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine which storage locker offers a better price, we need to calculate the monthly cost of locker B, which rents for \$2.13 per week. Since there are 4 weeks in a month, that means locker B costs \( 2.13 \times 4 = \$8.52 \) per month. Now, we can see the costs: - Locker A costs \( \frac{\$32}{y d^{2}} \) per month. - Locker B costs \$8.52 per month. To find out which one is better, we can compare these two prices directly. Locker B, at \$8.52 per month, is cheaper than locker A as long as \( 32 > 8.52y d^{2} \). This indicates that if the variables \( y \) and \( d \) are low enough, locker A can be a good deal, but generally, locker B is the winner here for typical values. Now, when considering storage options, think about how often you'll access your items. If it's frequent and you need convenience, a more centrally located, possibly pricier locker might save you vehicle and time costs in the long run! On the other hand, if the items can remain semi-untouched, save those bucks with locker B!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad