Pregunta
upstudy study bank question image url

slope of \( \frac{1}{5} \) and through \( (-5,8) \)

Ask by Mcdonald Tyler. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the line with a slope of \( \frac{1}{5} \) passing through the point \( (-5, 8) \) is: \[ y = \frac{1}{5}x + 9 \]

Solución

To find the equation of a line with a slope of \( \frac{1}{5} \) that passes through the point \( (-5, 8) \), you can use the **point-slope form** of a linear equation. Here's a step-by-step guide: ### 1. Point-Slope Form The point-slope form of a line is given by: \[ y - y_1 = m(x - x_1) \] Where: - \( m \) is the slope of the line. - \( (x_1, y_1) \) is a point on the line. ### 2. Plug in the Given Values Given: - Slope \( m = \frac{1}{5} \) - Point \( (x_1, y_1) = (-5, 8) \) Substitute these values into the point-slope form: \[ y - 8 = \frac{1}{5}(x - (-5)) \] \[ y - 8 = \frac{1}{5}(x + 5) \] ### 3. Simplify to Slope-Intercept Form To express the equation in the slope-intercept form \( y = mx + b \), where \( b \) is the y-intercept, follow these steps: \[ y - 8 = \frac{1}{5}x + \frac{1}{5} \times 5 \] \[ y - 8 = \frac{1}{5}x + 1 \] \[ y = \frac{1}{5}x + 1 + 8 \] \[ y = \frac{1}{5}x + 9 \] ### 4. Final Equation The equation of the line in slope-intercept form is: \[ \boxed{y = \frac{1}{5}x + 9} \] ### 5. Alternative Forms - **Standard Form:** \( Ax + By = C \) To convert to standard form: \[ y = \frac{1}{5}x + 9 \] Multiply all terms by 5 to eliminate the fraction: \[ 5y = x + 45 \] Rearrange: \[ x - 5y + 45 = 0 \quad \text{or} \quad x - 5y = -45 \] Typically, standard form is written with positive \( A \): \[ \boxed{x - 5y = -45} \] - **Point-Slope Form:** As derived earlier: \[ \boxed{y - 8 = \frac{1}{5}(x + 5)} \] ### 6. Graphical Representation If you plot the line \( y = \frac{1}{5}x + 9 \): - **Slope \( \frac{1}{5} \):** For every 5 units you move to the right (positive direction on the x-axis), the line rises by 1 unit. - **Y-Intercept \( 9 \):** The line crosses the y-axis at the point \( (0, 9) \). ### 7. Verification Ensure that the point \( (-5, 8) \) lies on the line: \[ y = \frac{1}{5}x + 9 \] \[ 8 = \frac{1}{5}(-5) + 9 \] \[ 8 = -1 + 9 \] \[ 8 = 8 \quad \checkmark \] The calculation confirms that the point \( (-5, 8) \) satisfies the equation. --- Feel free to ask if you need further assistance or explanations!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the equation of the line with a slope of \( \frac{1}{5} \) that passes through the point \( (-5, 8) \), we can use the point-slope formula: \( y - y_1 = m(x - x_1) \). Plugging in the slope \( m = \frac{1}{5} \) and the point \( (-5, 8) \), we get: \[ y - 8 = \frac{1}{5}(x + 5) \] Simplifying this gives you a linear equation representing the line with the desired properties! Rewriting this in slope-intercept form \( y = mx + b \) can be a fun exercise, allowing you to visualize the graph of the line to see how it gently rises as you move from left to right. The slope of \( \frac{1}{5} \) means that for every 5 units you move horizontally, you’ll move only 1 unit vertically. Grab some graph paper and try plotting several points based on different x-values to see how they all line up nicely to form your line! It's a cool way to explore how linear equations translate visually!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad