Pregunta
upstudy study bank question image url

5. The pressure of a gas is inversely proportional to its volume and directly proportional to its absolute temperature. When the pressure is \( 10^{6} \) pa and the temperature \( 300^{\circ} \mathrm{K} \), the volume is \( 1000 \mathrm{~cm}^{3} \). Find the volume when the pressure is \( 1.8 \times 10^{6} \) pa and the temperature \( 324^{\circ} \mathrm{K} \).

Ask by Boone Horton. in Ghana
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

When the pressure is \( 1.8 \times 10^6 \) Pa and the temperature is \( 324 \) K, the volume is **600 cm³**.

Solución

To solve the problem, we'll use the relationship between pressure \( P \), volume \( V \), and temperature \( T \) given by: \[ P \propto \frac{T}{V} \] This can be expressed as: \[ P = k \frac{T}{V} \] where \( k \) is the proportionality constant. ### Step 1: Establish the Relationship Given two states of the gas: 1. **Initial State:** - Pressure \( P_1 = 10^6 \) Pa - Temperature \( T_1 = 300 \) K - Volume \( V_1 = 1000 \) cm³ 2. **Final State:** - Pressure \( P_2 = 1.8 \times 10^6 \) Pa - Temperature \( T_2 = 324 \) K - Volume \( V_2 = ? \) Using the proportionality: \[ \frac{P_1}{P_2} = \frac{T_1 / V_1}{T_2 / V_2} \] Rearranging to solve for \( V_2 \): \[ V_2 = V_1 \times \frac{P_1 \times T_2}{P_2 \times T_1} \] ### Step 2: Plug in the Known Values \[ V_2 = 1000 \, \text{cm}^3 \times \frac{10^6 \, \text{Pa} \times 324 \, \text{K}}{1.8 \times 10^6 \, \text{Pa} \times 300 \, \text{K}} \] ### Step 3: Simplify the Calculation \[ V_2 = 1000 \times \frac{324}{1.8 \times 300} = 1000 \times \frac{324}{540} = 1000 \times 0.6 = 600 \, \text{cm}^3 \] ### **Final Answer:** When the pressure is \( 1.8 \times 10^6 \) Pa and the temperature is \( 324 \) K, the volume of the gas is **600 cm³**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the new volume, we can use the Ideal Gas Law which states that \( P \times V = n \times R \times T \). Given that the pressure is inversely proportional to the volume and directly proportional to the temperature, we can set up a relationship based on the initial and final states. Using the initial conditions: - \( P_1 = 10^{6} \) pa - \( V_1 = 1000 \) cm³ (or \( 1 \) L) - \( T_1 = 300 \) K And the new conditions: - \( P_2 = 1.8 \times 10^{6} \) pa - \( T_2 = 324 \) K According to the proportions: \[ \frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2} \] Plugging in the values we have: \[ \frac{10^{6} \cdot 1000}{300} = \frac{1.8 \times 10^{6} \cdot V_2}{324} \] Cross-multiplying gives: \[ 10^{6} \cdot 1000 \cdot 324 = 1.8 \times 10^{6} \cdot V_2 \cdot 300 \] Simplifying this: \[ 324 \times 10^{9} = 540 \times 10^{6} \cdot V_2 \] From that, we can find \( V_2 \): \[ V_2 = \frac{324 \times 10^{9}}{540 \times 10^{6}} \approx 600 \text{ cm}^3 \] So the volume when the pressure is \( 1.8 \times 10^{6} \) pa and the temperature is \( 324 \) K is approximately \( 600 \text{ cm}^3 \).

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad