A company that manufactures bicycles has a fixed cost of \( \$ 90,000 \). It costs \( \$ 100 \) to produce each bicycle. The total cost for the company is the sum of its fixed cost and variable costs. Write the total cost, \( C \), as a function of the number of bicycles produced, \( x \). Then, find and interpret \( C(110) \). The total cost function is \( C(x)=\square \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
The total cost function can be expressed as \( C(x) = 90,000 + 100x \), where \( 90,000 \) represents the fixed costs and \( 100x \) accounts for the variable costs per bicycle produced. To find \( C(110) \), we substitute \( x = 110 \) into the function: \( C(110) = 90,000 + 100(110) = 90,000 + 11,000 = 101,000 \). This means that if the company produces 110 bicycles, the total cost incurred will be \( \$101,000 \). This amount reflects both the fixed costs and the costs associated with manufacturing those 110 bicycles.