Pregunta
upstudy study bank question image url

Ask by Martin Hart. in India
Jan 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The ratio of the volume of a cylinder to its surface area is .

Solución

To find the ratio of the volume of a cylinder to its surface area, let’s start by defining the cylinder’s dimensions:
  • Radius ®
  • Height (h)

Volume of a Cylinder

The volume of a cylinder is given by the formula:

Surface Area of a Cylinder

The surface area of a cylinder includes the areas of the two circular bases and the rectangular side (which wraps around to form the lateral surface). It is calculated as:
  • accounts for the top and bottom circular areas.
  • accounts for the lateral surface area.

Ratio of Volume to Surface Area

To find the ratio , divide the volume by the surface area:
Simplify the expression by canceling out common terms:

Final Expression

So, the ratio of the volume of a cylinder to its surface area is:

Interpretation

This ratio provides a relationship between the cylinder’s dimensions. For example:
  • If the height increases while the radius remains constant, the ratio increases, indicating that the volume grows faster relative to the surface area.
  • If the radius increases while the height remains constant, the ratio also increases, but the impact depends on the relative sizes of and .
Understanding this ratio is useful in various applications, such as optimizing materials usage for manufacturing cylinders where maximizing volume while minimizing surface area (or vice versa) is desired.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the ratio of the volume of a cylinder to its surface area, we start with their formulas. The volume of a cylinder is given by , where is the radius and is the height. The surface area is given by . Therefore, the ratio can be expressed as . This shows how the dimensions of the cylinder interplay in governing the volume in relation to its surface area!
If you imagine a soda can - it’s like a mini-cylinder that’s easy to visualize. This ratio is particularly useful in engineering and design fields where material efficiency matters! For example, a designer might want a can that holds the most liquid while using the least amount of aluminum. Understanding this relationship helps ensure that products are both functional and economical in terms of materials used.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad