11) \( \begin{aligned} f(x) & =\tan (\sqrt{x}) \\ & =\end{aligned} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
The function \( f(x) = \tan(\sqrt{x}) \) has some interesting properties. For \( x \geq 0 \), as \( x \) increases, \( \sqrt{x} \) will also increase, leading to periodic behavior in \( f(x) \) due to the nature of the tangent function. The outputs will be undefined for certain values of \( x \) where \( \sqrt{x} = \frac{\pi}{2} + n\pi \) for \( n \in \mathbb{Z} \). In practical applications, this function is often utilized in physics and engineering, especially when analyzing harmonic or periodic systems. Engineers might find \( \tan(\sqrt{x}) \) useful in signal processing or in analyzing systems with oscillatory behavior, where understanding the transitions between periodic phases is essential.