Pregunta
upstudy study bank question image url

Calculate the range and the standard deviation for the set of numbers. \( 6,3,2,6,7,6,1,5,2,7 \), The range is \( \square \). (Simplify your answer.)

Ask by Daniel Weber. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The range is 6, and the standard deviation is approximately 2.156.

Solución

It seems there was an issue with the calculation. Let's calculate the standard deviation manually. To calculate the standard deviation, we need to find the squared differences between each number and the mean, sum them up, and then divide by the total count of numbers. Finally, we take the square root of the result. Let's calculate the standard deviation manually. Calculate the value by following steps: - step0: Calculate: \(\sqrt{\frac{\left(6-4.5\right)^{2}+\left(3-4.5\right)^{2}+\left(2-4.5\right)^{2}+\left(6-4.5\right)^{2}+\left(7-4.5\right)^{2}+\left(6-4.5\right)^{2}+\left(1-4.5\right)^{2}+\left(5-4.5\right)^{2}+\left(2-4.5\right)^{2}+\left(7-4.5\right)^{2}}{10}}\) - step1: Write as a multiplication: \(\sqrt{\frac{\left(6-4.5\right)^{2}\times 3+\left(3-4.5\right)^{2}+\left(2-4.5\right)^{2}+\left(7-4.5\right)^{2}+\left(1-4.5\right)^{2}+\left(5-4.5\right)^{2}+\left(2-4.5\right)^{2}+\left(7-4.5\right)^{2}}{10}}\) - step2: Subtract the numbers: \(\sqrt{\frac{1.5^{2}\times 3+\left(3-4.5\right)^{2}+\left(2-4.5\right)^{2}+\left(7-4.5\right)^{2}+\left(1-4.5\right)^{2}+\left(5-4.5\right)^{2}+\left(2-4.5\right)^{2}+\left(7-4.5\right)^{2}}{10}}\) - step3: Subtract the numbers: \(\sqrt{\frac{1.5^{2}\times 3+\left(-1.5\right)^{2}+\left(2-4.5\right)^{2}+\left(7-4.5\right)^{2}+\left(1-4.5\right)^{2}+\left(5-4.5\right)^{2}+\left(2-4.5\right)^{2}+\left(7-4.5\right)^{2}}{10}}\) - step4: Subtract the numbers: \(\sqrt{\frac{1.5^{2}\times 3+\left(-1.5\right)^{2}+\left(-2.5\right)^{2}+\left(7-4.5\right)^{2}+\left(1-4.5\right)^{2}+\left(5-4.5\right)^{2}+\left(2-4.5\right)^{2}+\left(7-4.5\right)^{2}}{10}}\) - step5: Subtract the numbers: \(\sqrt{\frac{1.5^{2}\times 3+\left(-1.5\right)^{2}+\left(-2.5\right)^{2}+2.5^{2}+\left(1-4.5\right)^{2}+\left(5-4.5\right)^{2}+\left(2-4.5\right)^{2}+\left(7-4.5\right)^{2}}{10}}\) - step6: Subtract the numbers: \(\sqrt{\frac{1.5^{2}\times 3+\left(-1.5\right)^{2}+\left(-2.5\right)^{2}+2.5^{2}+\left(-3.5\right)^{2}+\left(5-4.5\right)^{2}+\left(2-4.5\right)^{2}+\left(7-4.5\right)^{2}}{10}}\) - step7: Subtract the numbers: \(\sqrt{\frac{1.5^{2}\times 3+\left(-1.5\right)^{2}+\left(-2.5\right)^{2}+2.5^{2}+\left(-3.5\right)^{2}+0.5^{2}+\left(2-4.5\right)^{2}+\left(7-4.5\right)^{2}}{10}}\) - step8: Subtract the numbers: \(\sqrt{\frac{1.5^{2}\times 3+\left(-1.5\right)^{2}+\left(-2.5\right)^{2}+2.5^{2}+\left(-3.5\right)^{2}+0.5^{2}+\left(-2.5\right)^{2}+\left(7-4.5\right)^{2}}{10}}\) - step9: Subtract the numbers: \(\sqrt{\frac{1.5^{2}\times 3+\left(-1.5\right)^{2}+\left(-2.5\right)^{2}+2.5^{2}+\left(-3.5\right)^{2}+0.5^{2}+\left(-2.5\right)^{2}+2.5^{2}}{10}}\) - step10: Convert the expressions: \(\sqrt{\frac{\left(\frac{3}{2}\right)^{2}\times 3+\left(-1.5\right)^{2}+\left(-2.5\right)^{2}+2.5^{2}+\left(-3.5\right)^{2}+0.5^{2}+\left(-2.5\right)^{2}+2.5^{2}}{10}}\) - step11: Convert the expressions: \(\sqrt{\frac{\left(\frac{3}{2}\right)^{2}\times 3+\left(-\frac{3}{2}\right)^{2}+\left(-2.5\right)^{2}+2.5^{2}+\left(-3.5\right)^{2}+0.5^{2}+\left(-2.5\right)^{2}+2.5^{2}}{10}}\) - step12: Convert the expressions: \(\sqrt{\frac{\left(\frac{3}{2}\right)^{2}\times 3+\left(-\frac{3}{2}\right)^{2}+\left(-\frac{5}{2}\right)^{2}+2.5^{2}+\left(-3.5\right)^{2}+0.5^{2}+\left(-2.5\right)^{2}+2.5^{2}}{10}}\) - step13: Convert the expressions: \(\sqrt{\frac{\left(\frac{3}{2}\right)^{2}\times 3+\left(-\frac{3}{2}\right)^{2}+\left(-\frac{5}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}+\left(-3.5\right)^{2}+0.5^{2}+\left(-2.5\right)^{2}+2.5^{2}}{10}}\) - step14: Convert the expressions: \(\sqrt{\frac{\left(\frac{3}{2}\right)^{2}\times 3+\left(-\frac{3}{2}\right)^{2}+\left(-\frac{5}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}+\left(-\frac{7}{2}\right)^{2}+0.5^{2}+\left(-2.5\right)^{2}+2.5^{2}}{10}}\) - step15: Convert the expressions: \(\sqrt{\frac{\left(\frac{3}{2}\right)^{2}\times 3+\left(-\frac{3}{2}\right)^{2}+\left(-\frac{5}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}+\left(-\frac{7}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(-2.5\right)^{2}+2.5^{2}}{10}}\) - step16: Convert the expressions: \(\sqrt{\frac{\left(\frac{3}{2}\right)^{2}\times 3+\left(-\frac{3}{2}\right)^{2}+\left(-\frac{5}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}+\left(-\frac{7}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(-\frac{5}{2}\right)^{2}+2.5^{2}}{10}}\) - step17: Convert the expressions: \(\sqrt{\frac{\left(\frac{3}{2}\right)^{2}\times 3+\left(-\frac{3}{2}\right)^{2}+\left(-\frac{5}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}+\left(-\frac{7}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(-\frac{5}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}}{10}}\) - step18: Multiply the terms: \(\sqrt{\frac{\frac{27}{4}+\left(-\frac{3}{2}\right)^{2}+\left(-\frac{5}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}+\left(-\frac{7}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(-\frac{5}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}}{10}}\) - step19: Rewrite the expression: \(\sqrt{\frac{\frac{27}{4}+\left(-\frac{3}{2}\right)^{2}+\left(-\frac{5}{2}\right)^{2}+\left(-\frac{5}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}+\left(-\frac{7}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}}{10}}\) - step20: Add the numbers: \(\sqrt{\frac{\frac{27}{4}+\left(-\frac{3}{2}\right)^{2}+\frac{25}{2}+\left(\frac{5}{2}\right)^{2}+\left(-\frac{7}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}}{10}}\) - step21: Rewrite the expression: \(\sqrt{\frac{\frac{27}{4}+\left(-\frac{3}{2}\right)^{2}+\frac{25}{2}+\left(\frac{5}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}+\left(-\frac{7}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}{10}}\) - step22: Add the numbers: \(\sqrt{\frac{\frac{27}{4}+\left(-\frac{3}{2}\right)^{2}+\frac{25}{2}+\frac{25}{2}+\left(-\frac{7}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}{10}}\) - step23: Add the numbers: \(\sqrt{\frac{\frac{93}{2}}{10}}\) - step24: Divide the terms: \(\sqrt{\frac{93}{20}}\) - step25: Use the properties of radicals: \(\frac{\sqrt{93}}{\sqrt{20}}\) - step26: Simplify the expression: \(\frac{\sqrt{93}}{2\sqrt{5}}\) - step27: Multiply by the Conjugate: \(\frac{\sqrt{93}\times \sqrt{5}}{2\sqrt{5}\times \sqrt{5}}\) - step28: Multiply the numbers: \(\frac{\sqrt{465}}{2\sqrt{5}\times \sqrt{5}}\) - step29: Multiply the numbers: \(\frac{\sqrt{465}}{10}\) The range of the given set of numbers is 6, and the standard deviation is approximately 2.156.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the range, you subtract the smallest number in the set from the largest number. The smallest number is \(1\) and the largest is \(7\). So, the range is \(7 - 1 = 6\). Next, to find the standard deviation, first calculate the mean (average) of the numbers. The sum of the numbers is \(6 + 3 + 2 + 6 + 7 + 6 + 1 + 5 + 2 + 7 = 45\) and there are \(10\) numbers, so the mean is \(45 / 10 = 4.5\). Now, subtract the mean from each number, square the result, and find the average of those squared differences: - \((6 - 4.5)^2 = 2.25\) - \((3 - 4.5)^2 = 2.25\) - \((2 - 4.5)^2 = 6.25\) - \((6 - 4.5)^2 = 2.25\) - \((7 - 4.5)^2 = 6.25\) - \((6 - 4.5)^2 = 2.25\) - \((1 - 4.5)^2 = 12.25\) - \((5 - 4.5)^2 = 0.25\) - \((2 - 4.5)^2 = 6.25\) - \((7 - 4.5)^2 = 6.25\) Adding these squared differences: \(2.25 + 2.25 + 6.25 + 2.25 + 6.25 + 2.25 + 12.25 + 0.25 + 6.25 + 6.25 = 52.5\). Now, divide by the number of observations minus 1 (since we are using a sample), which is \(10 - 1 = 9\): \(\frac{52.5}{9} = 5.8333\). Finally, take the square root to get the standard deviation: \(\sqrt{5.8333} \approx 2.414\). So, the range is \(6\) and the standard deviation is approximately \(2.414\).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad