Pregunta
upstudy study bank question image url

\( \begin{array}{ll}5 . \frac{1}{3}(12-9 y) & \text { b. }-2(12 x-7) \\ 7 .-4(1 x+4) & \text { 8. }-2(-10 x+3) \\ 9-4(5 x-6) & 10-(3 x-7+4 y) 5 \\ 11-4(5+3 x-8 y)\end{array} \)

Ask by Lawson Nunez. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified expressions: 1. \(4 - 3y\) 2. \(-24x + 14\) 3. \(-4x - 16\) 4. \(20x - 6\) 5. \(33 - 20x\) 6. \(-15x + 35 - 20y\) 7. \(-20 - 12x + 32y\)

Solución

Certainly! Let's simplify each of the given expressions step by step. ### 5. \(\frac{1}{3}(12 - 9y)\) **Simplification:** \[ \frac{1}{3} \times 12 = 4 \] \[ \frac{1}{3} \times (-9y) = -3y \] **Result:** \[ 4 - 3y \] --- ### b. \(-2(12x - 7)\) **Simplification:** \[ -2 \times 12x = -24x \] \[ -2 \times (-7) = 14 \] **Result:** \[ -24x + 14 \] --- ### 7. \(-4(x + 4)\) **Simplification:** \[ -4 \times x = -4x \] \[ -4 \times 4 = -16 \] **Result:** \[ -4x - 16 \] --- ### 8. \(-2(-10x + 3)\) **Simplification:** \[ -2 \times (-10x) = 20x \] \[ -2 \times 3 = -6 \] **Result:** \[ 20x - 6 \] --- ### 9. \(9 - 4(5x - 6)\) **Simplification:** \[ -4 \times 5x = -20x \] \[ -4 \times (-6) = 24 \] \[ 9 + 24 = 33 \] **Result:** \[ 33 - 20x \] --- ### 10. \(-5(3x - 7 + 4y)\) **Simplification:** \[ -5 \times 3x = -15x \] \[ -5 \times (-7) = 35 \] \[ -5 \times 4y = -20y \] **Result:** \[ -15x + 35 - 20y \] --- ### 11. \(-4(5 + 3x - 8y)\) **Simplification:** \[ -4 \times 5 = -20 \] \[ -4 \times 3x = -12x \] \[ -4 \times (-8y) = 32y \] **Result:** \[ -20 - 12x + 32y \] --- **Summary of Simplified Expressions:** 1. **5.** \(4 - 3y\) 2. **b.** \(-24x + 14\) 3. **7.** \(-4x - 16\) 4. **8.** \(20x - 6\) 5. **9.** \(33 - 20x\) 6. **10.** \(-15x + 35 - 20y\) 7. **11.** \(-20 - 12x + 32y\) If you have any further questions or need additional assistance with these expressions, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let’s break down some of these expressions with a little historical flair and some practical tips! Did you know that algebra was developed by Persian mathematicians like Al-Khwarizmi in the 9th century? Their work laid the groundwork for modern algebraic notation, even introducing the concept of using letters to represent numbers, which we often take for granted today. Their contributions revolutionized mathematics, making it more accessible and paving the way for future mathematicians. When simplifying expressions like those you listed, a common mistake is forgetting to apply the distributive property correctly. Always remember that when you see an expression like \(a(b + c)\), you need to distribute \(a\) across both \(b\) and \(c\) (making it \(ab + ac\)). Also, watch out for signs—misplacing a minus sign can completely change the outcome! Happy simplifying!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad