Pregunta
upstudy study bank question image url

A fumace wall Consists of 200 mm layer of refractory bricks, 6 mm layer of stcel plate and a 100 mm layer of insulation bricks. The maximum temperature of the wall is \( 1150^{\circ} \mathrm{C} \) on the furnace side and the minimum temperature is \( 40^{\circ} \mathrm{C} \) on the outermost side of the wall. An aceurate energ balance over the furnace shows that the hoat lass from the wall is \( 400 \mathrm{~W} / \mathrm{m}^{2} \). It is known that there is thin layer of air between the layers of refraciory bricks and the steel plate. Thernal conductivities for three layers are \( 1,52,45 \) and \( 0,138 \mathrm{~W} / \mathrm{m} \) respectively. Find (1) To how many millimeters of insulation brick is the air layer equivalent. (ii) What is the temperature of the outer surface of the cted plate.

Ask by Spencer King. in Zimbabwe
Jan 19,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

(1) The air layer is equivalent to approximately **265 mm**. (ii) The temperature of the outer surface of the steel plate is approximately **39.95°C**.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

To find the equivalent thickness of the insulation brick for the air layer and the temperature of the outer surface of the steel plate, we can use the thermal resistance concept and the heat transfer equation. ### Equivalent Thickness Calculation: The thermal resistance (R) for each layer is given by the formula: \[ R = \frac{L}{k} \] where \( L \) is the thickness and \( k \) is the thermal conductivity. For air, with an approximate thickness \( x \): \[ R_{\text{air}} = \frac{x}{0.025} \] For insulation bricks (thickness = 100 mm): \[ R_{\text{insulation}} = \frac{0.1}{0.138} \approx 0.7246 \, m^2K/W \] Thus, the equivalent thickness \( x \) of insulation bricks is calculated by setting the resistances equal: \[ \frac{x}{0.025} = 0.7246 \] Solving for \( x \): \[ x \approx 0.7246 * 0.025 \approx 0.0181 \, m = 18.1 mm \] ### Outer Surface Temperature Calculation: Using the known heat loss \( q = 400 \, W/m^2 \): The temperature drop (ΔT) through the layers can be calculated using: \[ q = \frac{ΔT}{R_{\text{total}}} \] The total thermal resistance is: \[ R_{\text{total}} = R_{\text{refractory}} + R_{\text{air}} + R_{\text{steel}} + R_{\text{insulation}} \] Calculating each resistance, we get: - For the refractory layer: \( R_{\text{refractory}} = \frac{0.2}{1.52} \approx 0.1316 \, m^2K/W \) - For the steel plate: \( R_{\text{steel}} = \frac{0.006}{45} \approx 0.0001333 \, m^2K/W \) Thus, \[ R_{\text{total}} \approx 0.1316 + 0.0180 + 0.0001333 + 0.7246 \approx 0.8747 \, m^2K/W \] Now, calculate ΔT: \[ 400 = \frac{1150 - T_{\text{outer}}}{0.8747} \] Solving for \( T_{\text{outer}} \): \[ 1150 - T_{\text{outer}} = 400 * 0.8747 \] \[ 1150 - T_{\text{outer}} \approx 349.88 \] \[ T_{\text{outer}} \approx 1150 - 349.88 \approx 800.12^{\circ}C \] So, the temperature of the outer surface of the steel plate is approximately \( 800.12^{\circ}C \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad