Use synthetic division to find the quotient and remainder when \( 5 x^{4}+9 x^{3}+3 x^{2}+2 x-8 \) (a) Complete this synthetic division table. \( -2) \quad 5 \quad 9 \quad 3 \quad 2 \quad-8 \) (b) Write your answer in the following form: Quotient + Remainder \( x+2 \) \( \frac{5 x^{4}+9 x^{3}+3 x^{2}+2 x-8}{x+2}=\square+\frac{\square}{x+2} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To perform synthetic division with \( -2 \) as the divisor for the polynomial \( 5x^{4}+9x^{3}+3x^{2}+2x-8 \), we set up the synthetic division table as follows: ``` -2 | 5 9 3 2 -8 | -10 2 -10 ------------------------ 5 -1 5 -8 0 ``` The bottom row gives us the coefficients of the quotient and the remainder. The coefficient corresponding to \( x^3 \) is \( 5 \), to \( x^2 \) is \( -1 \), to \( x \) is \( 5 \), and the remainder is \( 0 \). Therefore, the quotient is \( 5x^3 - x^2 + 5x \) and the remainder is \( 0 \). Now, in the prescribed format: \[ \frac{5 x^{4}+9 x^{3}+3 x^{2}+2 x-8}{x+2} = 5x^{3} - x^{2} + 5x + \frac{0}{x+2} \] Thus, filling in the squares, we have: \[ \frac{5 x^{4}+9 x^{3}+3 x^{2}+2 x-8}{x+2}=5x^{3}-x^{2}+5x \]