tending Concepis Altermative Formula You used SS, \( =\Sigma(x-x)^{2} \) when ealculating varianes and standard deviation. An alternative formula that is sometimes mere conveniont for hand calculations is \[ S S_{x}=\Sigma \Sigma x^{2}-\frac{(\Sigma x)^{2}}{11} \] You can find the sample variance by dividing the sum of squares by \( 1-1 \) and the sample standard deviation by finding the square root of the ample variance. a) Show how to obtain the alternative formula, b) Use the alternative formula to calculate the sample standard deviation for the data set in Exercise 15, 2) Compare your result with the sample standard deviation obtained in Exercise 15.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To obtain the alternative formula for the sum of squares, start with the formula for variance: 1. The traditional formula for variance is calculated as: \[ S^2 = \frac{SS}{n-1} = \frac{\Sigma (x - \bar{x})^2}{n-1} \] Expanding this, we know that: \[ \Sigma (x - \bar{x})^2 = \Sigma x^2 - \frac{(\Sigma x)^2}{n} \] This leads to the alternative formula for the sum of squares, \(SS\): \[ SS = \Sigma x^2 - \frac{(\Sigma x)^2}{n} \] Now, to compute the sample standard deviation using this alternative formula, input your dataset values into \(SS\) to calculate the sample variance \(S^2\) and then take the square root to obtain the standard deviation \(S\). You can then compare this with the standard deviation from Exercise 15. The exciting part about using this alternative method is that it can save you time, especially with larger datasets, and it’s great for confirming your previous results! Don’t forget to double-check your calculations for accuracy!