Solve the given differential equation. \[ x^{4}+\left(x^{5}-11\right) y^{\prime}=0 \] \( y=\square \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the differential equation \[ x^{4}+\left(x^{5}-11\right) y^{\prime}=0, \] we can rearrange it to isolate \( y' \): \[ y' = -\frac{x^{4}}{x^{5}-11}. \] Now we can integrate both sides with respect to \( x \): \[ y = -\int \frac{x^{4}}{x^{5}-11} \, dx. \] By using the substitution method, let \( u = x^{5} - 11 \), then \( du = 5x^{4} \, dx \), thus \( dx = \frac{du}{5x^{4}} \). Rearranging gives us: \[ y = -\frac{1}{5} \int \frac{1}{u} \, du = -\frac{1}{5} \ln |u| + C = -\frac{1}{5} \ln |x^{5} - 11| + C. \] Therefore, the solution is \[ y = -\frac{1}{5} \ln |x^{5} - 11| + C. \] Now, apply this equation to your life! Imagine using differential equations to model real-world phenomena like population growth or radioactive decay. They mathematically represent change over time and can help predict future trends, making you a bit of a fortune teller in the process! For instance, consider a situation like the spread of a virus; understanding the equations can help decide when to implement safety measures or when the peak might occur, potentially saving lives. Isn’t it fascinating how mathematical solutions can have practical implications?