Pregunta
upstudy study bank question image url

At noon \( (t=0) \), Alicia starts walking along a long, straight road at \( 5 \mathrm{mi} / \mathrm{hr} \). Her velocity decreases according to the function \( v(t)=5 /(t+1) \) for \( t \geq 0 \). At noon, Boris also starts walking along the same road with a 1 -mi head start on Alicia; his velocity is given by \( u(t)=3 /(t+1) \) for \( t \geq 0 \). a. Find the position functions for Alicia and Boris, where \( s=0 \) corresponds to Alicia's starting point. b. When, if ever, does Alicia overtake Boris?

Ask by Rodriquez Reese. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 1(a): Position Functions** - **Alicia's Position:** \( s_A(t) = 5 \ln(t + 1) \) miles - **Boris's Position:** \( s_B(t) = 1 + 3 \ln(t + 1) \) miles **Problem 1(b): When Does Alicia Overtake Boris?** To find when Alicia overtakes Boris, set \( s_A(t) = s_B(t) \): \[ 5 \ln(t + 1) = 1 + 3 \ln(t + 1) \] Subtract \( 3 \ln(t + 1) \) from both sides: \[ 2 \ln(t + 1) = 1 \] Divide both sides by 2: \[ \ln(t + 1) = \frac{1}{2} \] Exponentiate both sides to solve for \( t \): \[ t + 1 = e^{\frac{1}{2}} \approx 1.6487 \] Subtract 1 from both sides: \[ t \approx 0.6487 \text{ hours} \] Convert hours to minutes: \[ 0.6487 \times 60 \approx 38.92 \text{ minutes} \] **Conclusion:** Alicia overtakes Boris approximately 38.92 minutes after noon. **Simplified Answer:** Alicia overtakes Boris about 39 minutes after noon.

Solución

**Problem 1(a): Find the position functions for Alicia and Boris, where \( s=0 \) corresponds to Alicia's starting point.** **Solution:** To determine the position functions for Alicia and Boris, we'll integrate their velocity functions over time, considering their initial positions. 1. **Alicia's Position Function (\( s_A(t) \)):** - **Velocity Function:** \( v(t) = \frac{5}{t + 1} \) mi/hr - **Initial Position:** \( s_A(0) = 0 \) mi (since \( s=0 \) is Alicia's starting point) **Integration:** \[ s_A(t) = \int_{0}^{t} v(\tau) \, d\tau = \int_{0}^{t} \frac{5}{\tau + 1} \, d\tau = 5 \ln(\tau + 1) \Big|_{0}^{t} = 5 \ln(t + 1) \] 2. **Boris's Position Function (\( s_B(t) \)):** - **Velocity Function:** \( u(t) = \frac{3}{t + 1} \) mi/hr - **Initial Position:** \( s_B(0) = 1 \) mi (Boris has a 1-mile head start) **Integration:** \[ s_B(t) = s_B(0) + \int_{0}^{t} u(\tau) \, d\tau = 1 + \int_{0}^{t} \frac{3}{\tau + 1} \, d\tau = 1 + 3 \ln(\tau + 1) \Big|_{0}^{t} = 1 + 3 \ln(t + 1) \] **Final Position Functions:** \[ \boxed{ \begin{aligned} s_A(t) &= 5 \ln(t + 1) \\ s_B(t) &= 1 + 3 \ln(t + 1) \end{aligned} } \] Problem 1 (a) Answer: After simplifying, the position functions are  s_A(t) = 5 ln(t + 1) and  s_B(t) = 1 + 3 ln(t + 1). In symbols, s_A(t) = 5 ln(t+1) s_B(t) = 1 + 3 ln(t+1).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the position functions for Alicia and Boris, let's first derive their position from their velocities. ### Part a: Alicia's velocity function is \( v(t) = \frac{5}{t+1} \). To find her position function \( s_A(t) \), we need to integrate the velocity function: \[ s_A(t) = \int v(t) \, dt = \int \frac{5}{t+1} \, dt = 5 \ln(t+1) + C_A. \] Since Alicia starts at \( s_A(0) = 0 \), we can set \( C_A = 0 \). Thus, Alicia's position function is: \[ s_A(t) = 5 \ln(t+1). \] Boris has a 1-mile head start, so his position function (starting at 1 mile) is based on his velocity \( u(t) = \frac{3}{t+1} \): \[ s_B(t) = \int u(t) \, dt = \int \frac{3}{t+1} \, dt = 3 \ln(t+1) + C_B. \] With the initial position at \( s_B(0) = 1 \), we find \( C_B = 1 \). Thus, Boris' position function is: \[ s_B(t) = 3 \ln(t+1) + 1. \] ### Part b: To determine when Alicia overtakes Boris, we need to find \( t \) such that: \[ s_A(t) = s_B(t). \] This leads to: \[ 5 \ln(t+1) = 3 \ln(t+1) + 1. \] Rearranging gives: \[ 5 \ln(t+1) - 3 \ln(t+1) = 1, \] \[ 2 \ln(t+1) = 1. \] Dividing both sides by 2 yields: \[ \ln(t+1) = \frac{1}{2}. \] Exponentiating both sides results in: \[ t+1 = e^{1/2}, \] so \[ t = e^{1/2} - 1 \approx 0.6487. \] Thus, Alicia will overtake Boris approximately 0.6487 hours after noon, or around 38.92 minutes after noon.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad