Pregunta
upstudy study bank question image url

16. Write the prime factorization of 120 . \( \begin{array}{lll}\text { F. } 2^{3} \cdot 3 \cdot 5 & \text { G. } 2^{3} \bullet 15 \\ \text { H. } 2^{2} \cdot 3^{2} \bullet 5 & \text { J. } 2 \cdot 3 \cdot 5\end{array} \)

Ask by Garrett Bates. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The prime factorization of 120 is \( 2^{3} \cdot 3 \cdot 5 \).

Solución

To find the prime factorization of **120**, let's break it down step by step: 1. **Divide by 2 (the smallest prime number):** \[ 120 \div 2 = 60 \] 2. **Continue dividing by 2:** \[ 60 \div 2 = 30 \] 3. **Divide by 2 once more:** \[ 30 \div 2 = 15 \] 4. **Now, divide by the next prime number, which is 3:** \[ 15 \div 3 = 5 \] 5. **Finally, 5 is a prime number:** \[ 5 \div 5 = 1 \] Putting it all together, the prime factors of 120 are: \[ 2 \times 2 \times 2 \times 3 \times 5 = 2^3 \cdot 3 \cdot 5 \] **Matching with the provided options:** - **F.** \( 2^{3} \cdot 3 \cdot 5 \) **→ Correct** - G. \( 2^{3} \bullet 15 \) (15 is not fully factored into primes) - H. \( 2^{2} \cdot 3^{2} \cdot 5 \) (This equals 180, not 120) - J. \( 2 \cdot 3 \cdot 5 \) (This equals 30, not 120) **Therefore, the correct prime factorization of 120 is option F:** \[ 2^{3} \cdot 3 \cdot 5 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the prime factorization of 120, we can break it down step by step. Start by dividing by the smallest prime, which is 2. So, \(120 \div 2 = 60\), then \(60 \div 2 = 30\), and again \(30 \div 2 = 15\). Since 15 is not even, we move to the next prime number, which is 3. We get \(15 \div 3 = 5\) and 5 is a prime number itself. So, putting it all together, we have the prime factorization of 120 as \(2^3 \cdot 3 \cdot 5\). Now, did you know that prime factorization isn't just a math exercise but has real-life applications too? For example, cryptography relies heavily on prime numbers to secure data. The RSA encryption algorithm, widely used for secure internet transactions, depends on the difficulty of factoring large numbers into their prime components. So, the next time you enter your credit card information online, thank prime factorization for keeping it safe!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad