Pregunta
upstudy study bank question image url

Question 1 A Rhombus has coordinates \( \mathrm{A}(-3,1), \mathrm{B}(1,3), \mathrm{C}(3,7), \mathrm{D}(-1,5) \). (i) Show that the diagonals of this rhombus are perpendicular (ii) Find the equation of the longest diagonal (iii) Using the information from (ii) above, find the coordinates of the point of intersection of the diagonals Hint: Plot the points on a set of axis To complete (i)-(iii), you need to complete the following steps - Find the gradient of each diagonal and show that they are perpendicular. - Find the length of each of the diagonals - Identify the longest diagonal and find its equation - Give the coordinates of the vertices of the rhombus

Ask by Lee Reeves. in New Zealand
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The diagonals of the rhombus are perpendicular, the longest diagonal is \( y = x + 4 \), and the diagonals intersect at \( (0, 4) \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

To determine the orthogonal nature of the diagonals of the rhombus, calculate the gradients (slopes) of the diagonals AC and BD. The coordinates of A and C are A(-3, 1) and C(3, 7), giving a gradient of \(m_{AC} = \frac{7 - 1}{3 - (-3)} = \frac{6}{6} = 1\). For B(-1, 5) and D(1, 3), the gradient is \(m_{BD} = \frac{5 - 3}{-1 - 1} = \frac{2}{-2} = -1\). Since \(m_{AC} \cdot m_{BD} = 1 \cdot (-1) = -1\), the diagonals are indeed perpendicular! Next, measuring the lengths of these diagonals reveals which one is the longest. The length of diagonal AC is determined using the distance formula: \(DA = \sqrt{(3 - (-3))^2 + (7 - 1)^2} = \sqrt{6^2 + 6^2} = \sqrt{72} = 6\sqrt{2}\). For diagonal BD, \(DB = \sqrt{(1 - (-1))^2 + (3 - 5)^2} = \sqrt{(2)^2 + (-2)^2} = \sqrt{8} = 2\sqrt{2}\). Thus, the longest diagonal is AC. To deduce the equation of diagonal AC, apply the slope-intercept form \(y - y_1 = m(x - x_1)\) using the slope of 1 from earlier. With point A(-3,1), the equation becomes \(y - 1 = 1(x + 3)\) or \(y = x + 4\). The intersection point of the diagonals occurs at the midpoint of AC and BD. For diagonal AC, the midpoint is \(\left(\frac{-3 + 3}{2}, \frac{1 + 7}{2}\right) = (0, 4)\), while for diagonal BD, it’s \(\left(\frac{-1 + 1}{2}, \frac{5 + 3}{2}\right) = (0, 4)\). Thus, the coordinates of the intersection are (0, 4)! Happy plotting and calculating! Just remember, a rhombus with charming diagonals that bisect at right angles also comes with those delightful equal-length sides. It's a shape that keeps both mathematicians and artists intrigued!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad