Responder
a) \( x^2 + 3x + 2 \)
b) \( y^3 - 5y - 2 \)
c) \( 3m^2 - 14m + 8 \)
d) \( 2x^3 - 5x^2 + 1 \)
e) \( -x^2 + 10x - 25 \)
Solución
Let's expand and simplify each expression by collecting like terms.
---
### a) \((x + 1)(x + 2)\)
**Step 1: Apply the distributive property (FOIL method).**
\[
\begin{align*}
(x + 1)(x + 2) &= x \cdot x + x \cdot 2 + 1 \cdot x + 1 \cdot 2 \\
&= x^2 + 2x + x + 2
\end{align*}
\]
**Step 2: Combine like terms.**
\[
x^2 + 2x + x + 2 = x^2 + 3x + 2
\]
**Final Answer:**
\[
x^2 + 3x + 2
\]
---
### b) \((y + 2)(y^{2} - 2y - 1)\)
**Step 1: Distribute each term in the first polynomial to each term in the second polynomial.**
\[
\begin{align*}
(y + 2)(y^{2} - 2y - 1) &= y \cdot y^2 + y \cdot (-2y) + y \cdot (-1) + 2 \cdot y^2 + 2 \cdot (-2y) + 2 \cdot (-1) \\
&= y^3 - 2y^2 - y + 2y^2 - 4y - 2
\end{align*}
\]
**Step 2: Combine like terms.**
\[
y^3 - 2y^2 + 2y^2 - y - 4y - 2 = y^3 - 5y - 2
\]
**Final Answer:**
\[
y^3 - 5y - 2
\]
---
### c) \((3m - 2)(m - 4)\)
**Step 1: Apply the distributive property.**
\[
\begin{align*}
(3m - 2)(m - 4) &= 3m \cdot m + 3m \cdot (-4) - 2 \cdot m - 2 \cdot (-4) \\
&= 3m^2 - 12m - 2m + 8
\end{align*}
\]
**Step 2: Combine like terms.**
\[
3m^2 - 12m - 2m + 8 = 3m^2 - 14m + 8
\]
**Final Answer:**
\[
3m^2 - 14m + 8
\]
---
### d) \((2x - 1)(x^{2} - 2x - 1)\)
**Step 1: Distribute each term in the first polynomial to each term in the second polynomial.**
\[
\begin{align*}
(2x - 1)(x^{2} - 2x - 1) &= 2x \cdot x^2 + 2x \cdot (-2x) + 2x \cdot (-1) - 1 \cdot x^2 - 1 \cdot (-2x) - 1 \cdot (-1) \\
&= 2x^3 - 4x^2 - 2x - x^2 + 2x + 1
\end{align*}
\]
**Step 2: Combine like terms.**
\[
2x^3 - 4x^2 - x^2 - 2x + 2x + 1 = 2x^3 - 5x^2 + 1
\]
**Final Answer:**
\[
2x^3 - 5x^2 + 1
\]
---
### e) \(- (x - 5)^{2}\)
**Step 1: Expand the squared binomial.**
\[
(x - 5)^2 = (x)^2 - 2 \cdot x \cdot 5 + (5)^2 = x^2 - 10x + 25
\]
**Step 2: Apply the negative sign to each term.**
\[
- (x^2 - 10x + 25) = -x^2 + 10x - 25
\]
**Final Answer:**
\[
- x^2 + 10x - 25
\]
---
Each expression has been expanded and simplified by collecting like terms.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución