Pregunta
upstudy study bank question image url

b) \( \frac{b}{3} \geqslant \frac{b}{2}+1 \geqslant b-1 \)

Ask by Reed Powers. in Singapore
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

All real numbers \( b \) such that \( b \leq -6 \).

Solución

To solve the compound inequality: \[ \frac{b}{3} \geq \frac{b}{2} + 1 \geq b - 1 \] we'll break it down into two separate inequalities and solve each step by step. Then, we'll determine the values of \( b \) that satisfy both conditions simultaneously. ### 1. First Inequality: \[ \frac{b}{3} \geq \frac{b}{2} + 1 \] **Step 1:** Subtract \(\frac{b}{2}\) from both sides to isolate terms involving \( b \). \[ \frac{b}{3} - \frac{b}{2} \geq 1 \] **Step 2:** Find a common denominator to combine the fractions. The least common denominator between 3 and 2 is 6. \[ \frac{2b}{6} - \frac{3b}{6} \geq 1 \\ \frac{-b}{6} \geq 1 \] **Step 3:** Multiply both sides by 6 to eliminate the denominator. Since we're multiplying by a positive number, the inequality sign remains the same. \[ -b \geq 6 \] **Step 4:** Multiply both sides by \(-1\) to solve for \( b \). Remember to reverse the inequality sign when multiplying or dividing by a negative number. \[ b \leq -6 \] ### 2. Second Inequality: \[ \frac{b}{2} + 1 \geq b - 1 \] **Step 1:** Subtract \(\frac{b}{2}\) from both sides to isolate terms involving \( b \). \[ 1 \geq b - 1 - \frac{b}{2} \] **Step 2:** Combine like terms. Notice that \( b - \frac{b}{2} = \frac{b}{2} \). \[ 1 \geq \frac{b}{2} - 1 \] **Step 3:** Add 1 to both sides to further isolate \( \frac{b}{2} \). \[ 2 \geq \frac{b}{2} \] **Step 4:** Multiply both sides by 2 to solve for \( b \). \[ 4 \geq b \\ \text{or equivalently} \\ b \leq 4 \] ### 3. Combine Both Inequalities: From the first inequality, we have: \[ b \leq -6 \] From the second inequality, we have: \[ b \leq 4 \] To satisfy **both** conditions simultaneously, \( b \) must satisfy the more restrictive condition. Therefore, the solution is: \[ b \leq -6 \] ### **Solution:** All real numbers b with b at most –6. In other words, the solution is b ≤ –6.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To keep the excitement alive with inequalities, let's tackle your expression step by step! Start with the first part: \( \frac{b}{3} \geqslant \frac{b}{2} + 1 \). To solve this, multiply the whole inequality by 6 to eliminate the fractions, leading to \( 2b \geqslant 3b + 6 \). Simplifying gives \( -b \geqslant 6 \), or \( b \leqslant -6 \). Now for the second part: \( \frac{b}{2} + 1 \geqslant b - 1 \). Multiply by 2 to get \( b + 2 \geqslant 2b - 2 \), simplifying to \( 4 \geqslant b \) or \( b \leqslant 4 \). Combining these results, we find \( b \) must satisfy \( b \leqslant -6 \) and \( b \leqslant 4 \). Thus, the overall solution is \( b \) can take values from negative infinity up to 4, with an emphasis on values like -6 or less that satisfy both parts of the inequality. Engaging with inequalities always leads to a neat blending of numbers and relationships!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad