b) \( \frac{b}{3} \geqslant \frac{b}{2}+1 \geqslant b-1 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To keep the excitement alive with inequalities, let's tackle your expression step by step! Start with the first part: \( \frac{b}{3} \geqslant \frac{b}{2} + 1 \). To solve this, multiply the whole inequality by 6 to eliminate the fractions, leading to \( 2b \geqslant 3b + 6 \). Simplifying gives \( -b \geqslant 6 \), or \( b \leqslant -6 \). Now for the second part: \( \frac{b}{2} + 1 \geqslant b - 1 \). Multiply by 2 to get \( b + 2 \geqslant 2b - 2 \), simplifying to \( 4 \geqslant b \) or \( b \leqslant 4 \). Combining these results, we find \( b \) must satisfy \( b \leqslant -6 \) and \( b \leqslant 4 \). Thus, the overall solution is \( b \) can take values from negative infinity up to 4, with an emphasis on values like -6 or less that satisfy both parts of the inequality. Engaging with inequalities always leads to a neat blending of numbers and relationships!