Pregunta
upstudy study bank question image url

Use logarithmic differentiation to find the derivative of the function.
Step 1
Using properties of logarthms, we can rewrite the equation as , which is equivalent
Step 2
Note that is a product. Therefore, its derivative is given by
Step 3
On the other hand, the derivative of is
Step 4
Equating the two derivatives, we have
If we replace with and solve for , we can conclude that the derivative is
SUBMIT
SKIP (YOU CANNOT COME BACK)

Ask by Griffiths Mitchell. in the United States
Mar 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative of is:

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

Did you know that logarithmic differentiation was utilized as early as the 17th century by mathematicians like John Napier, who invented logarithms? It simplifies the differentiation process, particularly for complex functions involving exponents and products. By taking the natural logarithm of both sides, you turn multiplication into addition and division into subtraction, making it much easier to handle the subsequent calculus!
In the real world, logarithmic differentiation finds its applications in various fields such as physics and engineering, where relationships can be exponential. For example, when measuring compound interest or population growth, these equations can become unwieldy quick. By applying logarithmic differentiation, mathematicians and scientists can derive important rates of change that help inform predictions and decisions in resource management or financial forecasting.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad