Pregunta
upstudy study bank question image url

c) \( x^{2}+t x y-4 x y-4 t y^{2} \)

Ask by Kelley Morrison. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ x^{2} + txy - 4xy - 4ty^{2} = (x + ty)(x - 4y) \]

Solución

To factor the expression: \[ x^{2} + txy - 4xy - 4ty^{2} \] **Step 1: Combine Like Terms** First, group the terms involving \( xy \): \[ x^{2} + (txy - 4xy) - 4ty^{2} = x^{2} + xy(t - 4) - 4ty^{2} \] **Step 2: Factor by Grouping** Treat the expression as a quadratic in terms of \( x \): \[ x^{2} + xy(t - 4) - 4ty^{2} \] We aim to factor this into the form: \[ (x + ay)(x + by) \] where \( a \) and \( b \) are constants to be determined. **Step 3: Find \( a \) and \( b \)** To find \( a \) and \( b \), set up the following equations based on the expanded form: 1. \( a + b = t - 4 \) (sum of the coefficients) 2. \( ab = -4t \) (product of the coefficients) Solving these, we find: - \( a = t \) - \( b = -4 \) **Step 4: Write the Factored Form** Substitute \( a \) and \( b \) back into the factored form: \[ (x + ty)(x - 4y) \] **Final Answer:** \[ x^{2} + txy - 4xy - 4ty^{2} = (x + ty)(x - 4y) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that polynomial expressions like this one can often be factored using various techniques? In this case, you might be looking for patterns to express it in a more manageable form, potentially through grouping or recognizing it as a quadratic in terms of \(x\) or \(y\). The game of matching terms to find common factors can really sharpen your math skills! Speaking of real-world applications, polynomials pop up everywhere, from physics equations to financial models. For instance, engineers often use polynomial functions to design curves and structures, ensuring stability and aesthetic appeal. So, the next time you see \(x^{2}+t x y-4 x y-4 t y^{2}\), think of it as a mathematical tool that helps build bridges or design rollercoasters!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad