23) Simplify. \( \frac{m^{3} n^{-6}}{p^{9}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To simplify the expression \( \frac{m^{3} n^{-6}}{p^{9}} \), we can start by rewriting it in a more manageable form. The term \( n^{-6} \) can be expressed as \( \frac{1}{n^{6}} \), transforming the entire expression to \( \frac{m^{3}}{p^{9} n^{6}} \). Now, the simplified expression is \( \frac{m^{3}}{p^{9} n^{6}} \). Think of this simplification process like cleaning up your workspace. By moving negative exponents to the denominator, you create a clearer view, making it easier to handle the expression in further calculations! So, keep it neat and organized!