Pregunta

b) \( x^{2}+9 x-36 \)

Ask by Hanson Lowe. in South Africa
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x^{2} + 9x - 36 = (x + 12)(x - 3) \)

Solución

To factor the quadratic expression \( x^{2} + 9x - 36 \), follow these steps: ### Step 1: Identify the Coefficients The quadratic equation is in the form \( ax^{2} + bx + c \), where: - \( a = 1 \) - \( b = 9 \) - \( c = -36 \) ### Step 2: Find Two Numbers that Multiply to \( a \times c \) and Add to \( b \) We need to find two numbers that: - Multiply to \( 1 \times (-36) = -36 \) - Add up to \( 9 \) **Possible Pairs:** - \( 12 \) and \( -3 \) (since \( 12 \times (-3) = -36 \) and \( 12 + (-3) = 9 \)) ### Step 3: Rewrite the Middle Term Using These Numbers Express the quadratic as: \[ x^{2} + 12x - 3x - 36 \] ### Step 4: Factor by Grouping Group the terms: \[ (x^{2} + 12x) + (-3x - 36) \] Factor out the greatest common factor from each group: \[ x(x + 12) - 3(x + 12) \] ### Step 5: Factor Out the Common Binomial \[ (x - 3)(x + 12) \] ### Final Factored Form \[ x^{2} + 9x - 36 = (x + 12)(x - 3) \] ### Verification (Optional) To ensure the factoring is correct, expand the factors: \[ (x + 12)(x - 3) = x(x) + x(-3) + 12(x) + 12(-3) = x^{2} - 3x + 12x - 36 = x^{2} + 9x - 36 \] Which matches the original expression. **Therefore, the factored form is:** \[ (x + 12)(x - 3) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the quadratic equation \( x^{2}+9x-36 = 0 \) using the quadratic formula, you can substitute \( a = 1 \), \( b = 9 \), and \( c = -36 \) into the formula \( x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \). This yields two potential solutions: \( x = \frac{{-9 + 15}}{2} = 3 \) and \( x = \frac{{-9 - 15}}{2} = -12 \). So, your solutions are \( x = 3 \) and \( x = -12 \)! Did you know that the quadratic formula provides a universal method for solving quadratics, regardless of their complexity? It was popularized by the ancient Greeks and has been mathematically refined over centuries. So the next time you're solving a quadratic, remember this hefty mathematical history behind that nifty formula! In practice, quadratics are everywhere—from physics equations to business profit models. For instance, you can use quadratics to determine maximum profit in a given pricing strategy or to model the path of a ball thrown in the air. This real-world application shows just how integral these mathematical concepts are to everyday life!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad