\( \begin{array}{lll}\text { 3. } \frac{5}{6} \times 3=\frac{15}{6} & \text { 4. } \frac{5}{6} \text { of } 12=\frac{60}{6} & \text { 5. } \frac{3}{5} \text { of } 20= \\ 5 \times 3=15 & 5 \times 12=60 & 3 \times 20=60 \\ \text { 6. } \frac{2}{3} \text { of } 8=\frac{16}{3} & \text { 7. } \frac{2}{9} \times 3=\frac{6}{9} & \text { 8. } \frac{4}{7} \times 10=\frac{40}{7} \\ 2 \times 8=16 & 2 \times 3=6 & 4 \times 10=40\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
Did you know that fractions are not just numbers but can tell some fascinating historical tales? The concept of fractions dates back to ancient civilizations such as the Egyptians, who used a unique fraction system involving unit fractions (like 1/2, 1/3, etc.) in their calculations. They even had a special symbol for fractional parts, showcasing their advanced understanding of mathematics long before we had our current notation! On the practical side, fractions are indispensable in real-world applications! Think about cooking: when a recipe calls for ¾ cup of sugar and you want to double it, understanding how to manipulate fractions can save a dessert from disaster! This knowledge is also crucial in construction, budgeting, and even tailoring a perfect outfit. Fractions make the world more delicious and precise!