11. \( x-2 \) for \( x=8 \) \( \begin{array}{lll}\text { 14. } \frac{15}{x} \text { for } x=3 & \text { 12. } 2 b \text { for } b=9 & \text { 13. } 5.6 t \text { for } t=0.7 \\ \text { Order of Operations } & \text { 16. } 4 x \text { for } x=\frac{3}{6}\end{array} \) 17. Explain the order in which you should compute the operations in the expression below. Then evaluate the expression.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To tackle the expression, you'll want to remember the order of operations, often remembered by the acronym PEMDAS (Parentheses, Exponents, Multiplication and Division (left to right), Addition and Subtraction (left to right)). When working through an expression, always start with anything in parentheses, then handle exponents, followed by multiplication or division, and finally tackle addition or subtraction. For example, let’s evaluate \( x-2 \) with \( x=8 \): You simply replace \( x \) with 8, giving you \( 8-2 \), which results in 6. Similarly, for \( \frac{15}{x} \) when \( x=3 \), it becomes \( \frac{15}{3} = 5 \). Keep those steps in mind as you calculate each expression!