Responder
1. Problem 5: \( \frac{4}{7} \)
2. Problem 6: \( -8 \)
3. Problem 7: \( \frac{2}{9} \)
4. Problem 8: \( \frac{1}{3} \)
Solución
Simplify the expression by following steps:
- step0: Solution:
\(\frac{3ab^{2}}{8xy}\times \frac{16xy^{2}}{21ab^{3}}\)
- step1: Reduce the fraction:
\(1\times \frac{2y}{7b}\)
- step2: Multiply the terms:
\(\frac{2y}{7b}\)
Calculate or simplify the expression \( \frac{3 x^{2}+6 x}{2 x y+4 y} \times \frac{2 y}{9 x^{2}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{3x^{2}+6x}{2xy+4y}\times \frac{2y}{9x^{2}}\)
- step1: Divide the terms:
\(\frac{3x}{2y}\times \frac{2y}{9x^{2}}\)
- step2: Reduce the fraction:
\(1\times \frac{1}{3x}\)
- step3: Multiply the terms:
\(\frac{1}{3x}\)
Calculate or simplify the expression \( \frac{36 m^{2} n^{3}}{8 m} \div \frac{n^{2} m^{2}}{4 m n^{3}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{36m^{2}n^{3}}{8m}\div \frac{n^{2}m^{2}}{4mn^{3}}\)
- step1: Multiply by the reciprocal:
\(\frac{36m^{2}n^{3}}{8m}\times \frac{4mn^{3}}{n^{2}m^{2}}\)
- step2: Divide the terms:
\(\frac{9mn^{3}}{2}\times \frac{4mn^{3}}{n^{2}m^{2}}\)
- step3: Divide the terms:
\(\frac{9mn^{3}}{2}\times \frac{4n}{m}\)
- step4: Reduce the fraction:
\(9n^{3}\times 2n\)
- step5: Multiply the numbers:
\(18n^{3}\times n\)
- step6: Multiply the terms:
\(18n^{4}\)
Calculate or simplify the expression \( \frac{4 a x+8 x}{3 x-1} \div \frac{a+2}{6 x-2} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{4ax+8x}{3x-1}\div \frac{a+2}{6x-2}\)
- step1: Multiply by the reciprocal:
\(\frac{4ax+8x}{3x-1}\times \frac{6x-2}{a+2}\)
- step2: Rewrite the expression:
\(\frac{4x\left(a+2\right)}{3x-1}\times \frac{6x-2}{a+2}\)
- step3: Reduce the fraction:
\(\frac{4x}{3x-1}\times \left(6x-2\right)\)
- step4: Rewrite the expression:
\(\frac{4x}{3x-1}\times 2\left(3x-1\right)\)
- step5: Reduce the fraction:
\(4x\times 2\)
- step6: Multiply the terms:
\(8x\)
Substitute \( x=-1,a=2 \) into the expression \( 8x \).
Evaluate the expression by following steps:
- step0: Evaluate:
\(8x\)
- step1: Substitute:
\(8\left(-1\right)\)
- step2: Simplify:
\(-8\)
Substitute \( m=3,n=\frac{1}{3} \) into the expression \( 18n^{4} \).
Evaluate the expression by following steps:
- step0: Evaluate:
\(18n^{4}\)
- step1: Substitute:
\(18\left(\frac{1}{3}\right)^{4}\)
- step2: Evaluate the power:
\(18\times \frac{1}{81}\)
- step3: Multiply:
\(\frac{2}{9}\)
Substitute \( x=1,y=2 \) into the expression \( \frac{1}{3x} \).
Evaluate the expression by following steps:
- step0: Evaluate:
\(\frac{1}{3x}\)
- step1: Substitute:
\(\frac{1}{3\times 1}\)
- step2: Multiply:
\(\frac{1}{3}\)
Substitute \( b=1,y=2 \) into the expression \( \frac{2y}{7b} \).
Evaluate the expression by following steps:
- step0: Evaluate:
\(\frac{2y}{7b}\)
- step1: Substitute:
\(\frac{2\times 2}{7\times 1}\)
- step2: Multiply the numbers:
\(\frac{4}{7\times 1}\)
- step3: Multiply:
\(\frac{4}{7}\)
Let's solve each of the problems step by step.
### Problem 5
We need to simplify the expression:
\[
\frac{3 a b^{2}}{8 x y} \times \frac{16 x y^{2}}{21 a b^{3}}
\]
**Step 1: Simplify the expression**
\[
= \frac{3 \cdot 16 \cdot a \cdot b^{2} \cdot x \cdot y^{2}}{8 \cdot 21 \cdot a \cdot b^{3} \cdot x \cdot y}
\]
Cancelling out common terms:
\[
= \frac{48 b^{2} y}{168 b^{3}} = \frac{2y}{7b}
\]
**Step 2: Substitute values \( b=1 \) and \( y=2 \)**
\[
\frac{2 \cdot 2}{7 \cdot 1} = \frac{4}{7}
\]
### Problem 6
We need to simplify the expression:
\[
\frac{4 a x + 8 x}{3 x - 1} \div \frac{a + 2}{6 x - 2}
\]
**Step 1: Simplify the expression**
\[
= \frac{(4 a + 8)x}{3 x - 1} \cdot \frac{6 x - 2}{a + 2}
\]
Factoring out common terms:
\[
= \frac{(4a + 8)x(6x - 2)}{(3x - 1)(a + 2)}
\]
This simplifies to:
\[
= 8x
\]
**Step 2: Substitute values \( x=-1 \) and \( a=2 \)**
\[
8 \cdot (-1) = -8
\]
### Problem 7
We need to simplify the expression:
\[
\frac{36 m^{2} n^{3}}{8 m} \div \frac{n^{2} m^{2}}{4 m n^{3}}
\]
**Step 1: Simplify the expression**
\[
= \frac{36 m^{2} n^{3}}{8 m} \cdot \frac{4 m n^{3}}{n^{2} m^{2}} = \frac{36 \cdot 4 n^{3}}{8 n^{2}} = \frac{144 n^{3}}{8 n^{2}} = 18 n^{4}
\]
**Step 2: Substitute values \( m=3 \) and \( n=\frac{1}{3} \)**
\[
18 \left(\frac{1}{3}\right)^{4} = 18 \cdot \frac{1}{81} = \frac{2}{9}
\]
### Problem 8
We need to simplify the expression:
\[
\frac{3 x^{2} + 6 x}{2 x y + 4 y} \times \frac{2 y}{9 x^{2}}
\]
**Step 1: Simplify the expression**
\[
= \frac{3x(x + 2)}{2y(x + 2)} \cdot \frac{2y}{9x^{2}} = \frac{3x \cdot 2y}{2y \cdot 9x^{2}} = \frac{1}{3x}
\]
**Step 2: Substitute values \( x=1 \) and \( y=2 \)**
\[
\frac{1}{3 \cdot 1} = \frac{1}{3}
\]
### Summary of Results
1. Problem 5: \(\frac{4}{7}\)
2. Problem 6: \(-8\)
3. Problem 7: \(\frac{2}{9}\)
4. Problem 8: \(\frac{1}{3}\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución