Pregunta
upstudy study bank question image url

1. Cotton candy is sold at the circus in a cylindrical bucket. The height of the bucket is 13 inches, and the radius is 5.5 inches. If the bucket does not have a lid, which of the following equations represents the surface area of the cotton candy bucket? \( S A=\pi(5.5)^{2}+2 \pi(5.5)(13) \) \( S A=2 \pi(13)^{2}+2 \pi(13)(5.5) \) \( S A=2 \pi(5.5)^{2}+2 \pi(5.5)(13) \) \( S A=\pi(5.5)^{2}+\pi(5.5)(13) \)

Ask by Gordon Harmon. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct equation for the surface area of the cotton candy bucket without a lid is: \[ S A=\pi(5.5)^{2}+2 \pi(5.5)(13) \]

Solución

To determine the surface area of a cylindrical bucket without a lid, we can use the formula for the surface area of a cylinder and adjust it accordingly. ### General Formula for Surface Area of a Cylinder: \[ S = 2\pi r^2 + 2\pi r h \] - **\(2\pi r^2\)**: Represents the area of the top and bottom circles. - **\(2\pi r h\)**: Represents the area of the side (the lateral surface). ### Adjusting for No Lid: Since the bucket does not have a lid, we only have one base (bottom) instead of two. Therefore, we subtract one \( \pi r^2 \) from the total surface area: \[ S = \pi r^2 + 2\pi r h \] ### Given Values: - Height (\( h \)) = 13 inches - Radius (\( r \)) = 5.5 inches ### Plugging in the Values: \[ S = \pi (5.5)^2 + 2\pi (5.5)(13) \] ### Conclusion: The correct equation representing the surface area of the cotton candy bucket without a lid is: \[ S A=\pi(5.5)^{2}+2 \pi(5.5)(13) \] **Answer:** \( S A=\pi(5.5)^{2}+2 \pi(5.5)(13) \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

If you want to find the surface area of a cylindrical bucket without a lid, you need to include the curved surface area and the area of the base. The formula for the surface area \( SA \) of a cylinder is given by \( SA = 2\pi r^2 + 2\pi rh \) where \( r \) is the radius and \( h \) is the height. Since the bucket is open at the top, we consider just one base. Therefore, the correct equation representing the surface area of the cotton candy bucket is \( SA = \pi(5.5)^2 + 2\pi(5.5)(13) \). Now, let's talk about some fun facts! Did you know that cotton candy was popularized at the 1904 World's Fair? It was invented by a dentist named William Morrison and a confectioner named John C. Wharton, and they even had a machine that spun sugar to create this fluffy treat! It's a staple at fairs, circuses, and carnivals, delighting kids and adults alike with its airy sweetness. Curious how concepts like this appear in real life? The engineering behind cylindrical designs is critical in various industries! For example, in packaging and manufacturing, understanding surface areas helps in optimizing materials used, minimizing waste, and ensuring the strength of containers. So, while you're munching on cotton candy, you’re actually engaging with fundamental engineering principles!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad