Pregunta
upstudy study bank question image url

\( -1, \quad 2, \quad 7, \quad 14, \quad 23, \quad \ldots \) a) Work out the \( n^{\text {th }} \) term rule for this sequence. b) At what position does the term with value 62 appear in this sequence?

Ask by Crawford Romero. in the United Kingdom
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The \( n^{\text{th}} \) term is \( a_n = n^2 - 2 \). The term with value 62 appears in the 8th position.

Solución

Let's analyze the given sequence step by step to address both parts of the problem. **Given Sequence:** \[ -1, \quad 2, \quad 7, \quad 14, \quad 23, \quad \ldots \] ### a) Finding the \( n^{\text{th}} \) Term Rule **Step 1: Determine the Pattern of Differences** First, let's find the differences between consecutive terms: \[ \begin{align*} 2 - (-1) &= 3 \\ 7 - 2 &= 5 \\ 14 - 7 &= 7 \\ 23 - 14 &= 9 \\ \end{align*} \] The differences are: \(3, 5, 7, 9, \ldots\). **Step 2: Identify the Nature of the Sequence** Since the differences between terms are increasing by a constant value (in this case, 2), the sequence is **quadratic**. This implies that the \( n^{\text{th}} \) term can be expressed in the form: \[ a_n = an^2 + bn + c \] **Step 3: Determine the Coefficients \( a \), \( b \), and \( c \)** We can set up equations using the known terms: 1. For \( n = 1 \): \[ a(1)^2 + b(1) + c = -1 \quad \Rightarrow \quad a + b + c = -1 \quad \text{(Equation 1)} \] 2. For \( n = 2 \): \[ a(2)^2 + b(2) + c = 2 \quad \Rightarrow \quad 4a + 2b + c = 2 \quad \text{(Equation 2)} \] 3. For \( n = 3 \): \[ a(3)^2 + b(3) + c = 7 \quad \Rightarrow \quad 9a + 3b + c = 7 \quad \text{(Equation 3)} \] **Solving the System of Equations:** Subtract Equation 1 from Equation 2: \[ (4a + 2b + c) - (a + b + c) = 2 - (-1) \quad \Rightarrow \quad 3a + b = 3 \quad \text{(Equation 4)} \] Subtract Equation 2 from Equation 3: \[ (9a + 3b + c) - (4a + 2b + c) = 7 - 2 \quad \Rightarrow \quad 5a + b = 5 \quad \text{(Equation 5)} \] Subtract Equation 4 from Equation 5: \[ (5a + b) - (3a + b) = 5 - 3 \quad \Rightarrow \quad 2a = 2 \quad \Rightarrow \quad a = 1 \] Plugging \( a = 1 \) into Equation 4: \[ 3(1) + b = 3 \quad \Rightarrow \quad b = 0 \] Plugging \( a = 1 \) and \( b = 0 \) into Equation 1: \[ 1 + 0 + c = -1 \quad \Rightarrow \quad c = -2 \] **Final \( n^{\text{th}} \) Term Formula:** \[ a_n = n^2 - 2 \] **Verification:** \[ \begin{align*} n = 1: & \quad 1^2 - 2 = -1 \\ n = 2: & \quad 2^2 - 2 = 2 \\ n = 3: & \quad 3^2 - 2 = 7 \\ n = 4: & \quad 4^2 - 2 = 14 \\ n = 5: & \quad 5^2 - 2 = 23 \\ \end{align*} \] All terms match the given sequence. ### b) Determining the Position of the Term with Value 62 We need to find the value of \( n \) such that: \[ a_n = n^2 - 2 = 62 \] **Solving for \( n \):** \[ n^2 - 2 = 62 \\ n^2 = 64 \\ n = \sqrt{64} \\ n = 8 \quad \text{(since position \( n \) is positive)} \] **Conclusion:** The term with the value **62** appears in the **8th** position of the sequence. --- ### **Final Answers:** **a)** The \( n^{\text{th}} \) term is \( a_n = n^2 - 2 \). **b)** The term with value 62 appears in position 8.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the \( n^{\text {th }} \) term of the sequence, let's first look at the pattern. The difference between consecutive terms are: \[ 2 - (-1) = 3, \quad 7 - 2 = 5, \quad 14 - 7 = 7, \quad 23 - 14 = 9 \] The differences (3, 5, 7, 9) form an arithmetic sequence with a common difference of 2. Thus, the \( n^{\text{th}} \) term can be expressed as: \[ a_n = a_1 + \text{sum of the first (n-1) terms of the difference} \] The first term \( a_1 = -1 \), the sum of the first \( n - 1 \) terms of the differences is given by: \[ \text{difference sum} = 3 + 5 + 7 + \ldots = (1 + 2 + \ldots + (2n - 3)) + 3(n - 1) = (n-1)^2 + 3(n-1) \] Thus the \( n^{\text{th}} \) term can be simplified to: \[ a_n = -1 + (n-1)^2 + 3(n-1) = n^2 + n - 1 \] So the \( n^{\text{th}} \) term rule for the sequence is: \[ a_n = n^2 + n - 1 \] For the second part, we need to find \( n \) such that \( a_n = 62 \): \[ n^2 + n - 1 = 62 \] \[ n^2 + n - 63 = 0 \] Now we can factor this quadratic equation: \[ (n - 7)(n + 9) = 0 \] Thus, \( n = 7 \) (since \( n \) must be positive) shows that the term with a value of 62 appears at position 7 in the sequence. So, the answers are: a) \( a_n = n^2 + n - 1 \) b) The term with value 62 appears at position 7.

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad