Pregunta
upstudy study bank question image url

2. Solve the inequality \( \frac{2}{3} y-\frac{1}{3}(1-2 y) \geq y+\left\lvert\, \frac{1}{3}\right. \) and illuatrate your anewer on a number line.

Ask by Olson Bowman. in Ghana
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( y \geq 2 \) On the number line, this is represented by a closed circle at 2 and an arrow pointing to the right, indicating all values greater than or equal to 2 satisfy the inequality.

Solución

To solve the inequality: \[ \frac{2}{3} y - \frac{1}{3}(1 - 2y) \geq y + \left| \frac{1}{3} \right| \] follow these steps: ### Step 1: Simplify Both Sides 1. **Simplify the Absolute Value**: \[ \left| \frac{1}{3} \right| = \frac{1}{3} \] 2. **Expand the Left Side**: \[ \frac{2}{3} y - \frac{1}{3}(1 - 2y) = \frac{2}{3} y - \frac{1}{3} + \frac{2}{3} y = \frac{4}{3} y - \frac{1}{3} \] 3. **Write the Simplified Inequality**: \[ \frac{4}{3} y - \frac{1}{3} \geq y + \frac{1}{3} \] ### Step 2: Collect Like Terms 1. **Subtract \( y \) from Both Sides**: \[ \frac{4}{3} y - y - \frac{1}{3} \geq \frac{1}{3} \] 2. **Convert \( y \) to Thirds**: \[ \frac{4}{3} y - \frac{3}{3} y - \frac{1}{3} \geq \frac{1}{3} \] 3. **Combine Like Terms**: \[ \frac{1}{3} y - \frac{1}{3} \geq \frac{1}{3} \] 4. **Add \( \frac{1}{3} \) to Both Sides**: \[ \frac{1}{3} y \geq \frac{2}{3} \] 5. **Multiply Both Sides by 3**: \[ y \geq 2 \] ### Solution \[ y \geq 2 \] ### Number Line Illustration Below is the graph of the solution on a number line: \[ \begin{array}{c} \text{---|---|---|---|---|---|---|---} \\ \quad 1 \quad \quad 2 \quad \quad 3 \quad \end{array} \] - **Closed Circle at \( y = 2 \)**: Indicates that \( y = 2 \) is included in the solution. - **Shaded Region to the Right of 2**: Represents all values \( y \geq 2 \). \[ \begin{tikzpicture} \draw[<->] (-1,0) -- (5,0) node[right] {$y$}; \foreach \x in {0,2,4} \draw (\x,3pt) -- (\x,-3pt) node[below] {$\x$}; \draw[very thick] (2,0) circle (2pt); \draw[thick, ->] (2,0) -- (4.5,0); \end{tikzpicture} \] In this illustration: - The **closed dot** at \( y = 2 \) signifies \( y = 2 \) is part of the solution. - The **arrow** indicates that all values greater than or equal to 2 satisfy the inequality.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

First, let's simplify the given inequality step by step. We start with: \[ \frac{2}{3} y - \frac{1}{3} (1 - 2y) \geq y + \left\lvert \frac{1}{3} \right. \] Distributing \(-\frac{1}{3}\) within the parentheses: \[ \frac{2}{3} y - \frac{1}{3} + \frac{2}{3} y \geq y + \frac{1}{3} \] Combining like terms on the left side gives: \[ \frac{4}{3} y - \frac{1}{3} \geq y + \frac{1}{3} \] Now, we will bring like terms together. Subtract \(y\) from both sides: \[ \frac{4}{3} y - y - \frac{1}{3} \geq \frac{1}{3} \] This can be rewritten as: \[ \frac{4}{3} y - \frac{3}{3} y - \frac{1}{3} \geq \frac{1}{3} \] Simplifying further yields: \[ \frac{1}{3} y - \frac{1}{3} \geq \frac{1}{3} \] Now, add \(\frac{1}{3}\) to both sides: \[ \frac{1}{3} y \geq \frac{1}{3} + \frac{1}{3} \] This simplifies to: \[ \frac{1}{3} y \geq \frac{2}{3} \] To solve for \(y\), multiply both sides by 3: \[ y \geq 2 \] Now, we can illustrate this on a number line. You would place a closed circle on the number 2 (since it is included in the solution) and shade all the numbers to the right of 2, indicating that \(y\) can be any number greater than or equal to 2. So the solution is \(y \geq 2\) with a visual representation as described.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad