Pregunta
upstudy study bank question image url

Interest rate (with changing years). Keiko is looking at the following investment choices and wants to know what annual rate of return each choice produces. a. Invest \( \$ 450.00 \) and receive \( \$ 746.23 \) in 11 years. b. Invest \( \$ 3,600.00 \) and receive \( \$ 10,465.82 \) in 17 years. c. Invest \( \$ 32,914.85 \) and receive \( \$ 120,000.00 \) in 20 years. d. Invest \( \$ 33,619.78 \) and receive \( \$ 1,300,000.00 \) in 40 years. d. What annual rate of return will Keiko earn if she invests \( \$ 33,619.78 \) today and receives \( \$ 1,300,000.00 \) in 40 years? \( \% \) (Round to two decimal places.)

Ask by Ramos O'Quinn. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Keiko will earn an annual rate of return of **9.57%**.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

To determine the annual rate of return for Keiko's investment, we can use the formula for compound interest, which is: \[ A = P(1 + r)^t \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (as a decimal). - \( t \) is the number of years the money is invested. For Keiko's investment of \( \$ 33,619.78 \) that grows to \( \$ 1,300,000.00 \) over \( 40 \) years, we can rearrange the formula to solve for \( r \): 1. \( 1,300,000 = 33,619.78(1 + r)^{40} \) 2. Divide both sides by \( 33,619.78 \): \[ \frac{1,300,000}{33,619.78} = (1 + r)^{40} \] 3. Calculate \( \frac{1,300,000}{33,619.78} \): \[ \frac{1,300,000}{33,619.78} \approx 38.675 \] 4. Now take the 40th root of both sides to solve for \( r \): \[ 1 + r = (38.675)^{\frac{1}{40}} \] 5. Using a calculator, we find: \[ (38.675)^{\frac{1}{40}} \approx 1.100047 \] Hence, \[ r \approx 1.100047 - 1 \approx 0.100047 \] Now converting \( r \) to a percentage: \[ r \approx 0.100047 \times 100 \approx 10.00\% \] So, Keiko will earn an annual rate of return of approximately **10.00%**. --- Delving into the world of investments, it's essential to understand how powerful compounding can be. Just imagine: if you invest wisely, a little today can turn into a fortune tomorrow! Historically speaking, the stock market has averaged about a 7% return annually over the long haul, which highlights the potential for growth when you allow your money to work for you. As for practical tips, avoid the common pitfall of making emotional investment decisions! Stick to your plan and closely monitor your investments without allowing panic to dictate your actions. Prepare for market fluctuations so you can stay focused on your long-term goals and reap the benefits of patience!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad