Pregunta
upstudy study bank question image url

In a survey of 729 lesbian, gay, bisexual, or transgender adults in a certain country, 410 said that they consider themselves bisexual.
Construct a 99% confidence interval for the population proportion. Interpret the results. Being by finding the margin of error.
The margin of error for the confidence interval for the population proportion is . (Round to three decimal places as needed.)
A 99% nfidence interval for the population proportion is ( , ).
(Round to three decimal places as needed.)
Interpret your results. Choose the correct answer below.
A. With confidence, it can be said that the population proportion of lesbian, gay, bisexual, or transgender adults who consider themselves bisexual is between the endpoints of the given confidence interval.
B. The endpoints of the given confidence interval show that of lesbian, gay, bisexual, or transgender adults consider themselves bisexual.
C. With probability, the population proportion of lesbian, gay, bisexual, or transgender adults who do not consider themselves bisexual is between the endpoints of the given confidence interval.
D. With confidence, it che said that the sample proportion of lesbian, gay, bisexual, or transgender adults who consider themselves bisexual is between the endpoints of the given confidence interval.

Ask by Haynes Ross. in the United States
Mar 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The margin of error is approximately 0.047. A 99% confidence interval for the population proportion is (0.516, 0.610).
Interpretation: With 99% confidence, it can be said that the population proportion of lesbian, gay, bisexual, or transgender adults who consider themselves bisexual is between 0.516 and 0.610.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To calculate the margin of error for the confidence interval, we first need to find the sample proportion § and its complement (q). Here, and . The standard error (SE) is calculated using the formula . For a confidence level, the Z-score is approximately . Thus, the margin of error (rounded to three decimal places).
The confidence interval is given by . Rounding gives us the interval .
Interpreting the results: A. With confidence, it can be said that the population proportion of lesbian, gay, bisexual, or transgender adults who consider themselves bisexual is between the endpoints of the given confidence interval.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad