Pregunta
upstudy study bank question image url

Zaki invests \( \$ 500 \) into a money market account that pays him \( 5.5 \% \) interest on his investment annually. After 2 years, Zaki puts an additional \( \$ 750 \) in the account. 3 years after that, he deposits another \( \$ 1,300 \). He then lets the account sit for 5 years. a. How much money does Zaki have after the first 2 years (before the deposit)? b. What is his new balance after depositing \( \$ 750 \) ? c. How much money does Zaki have in the account at the end of the next 3 years (before the next deposit)? d. What is his new balance after depositing \( \$ 1,300 \) ? e. How much money does Zaki have in the account at the end of the 10 year period? e. \( 50.51+6.055)^{2}=556.51 \) How much did Zaki earn in interest?

Ask by Erickson Craig. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 10 years, Zaki has \$3,702.61 in the account and earned \$1,152.61 in interest.

Solución

Let's tackle each part of Zaki's investment step by step. ### **Given:** - **Initial Investment:** \$500 - **Annual Interest Rate:** 5.5% - **Additional Deposits:** - **After 2 years:** \$750 - **After 5 years (3 years after the second deposit):** \$1,300 - **Total Investment Period:** 10 years Assuming the interest is **compounded annually**, let's proceed with each part. --- ### **a. Amount After the First 2 Years (Before the \$750 Deposit)** **Calculation:** \[ A = P(1 + r)^n \] Where: - \( P = \$500 \) - \( r = 5.5\% = 0.055 \) - \( n = 2 \) years \[ A = 500 \times (1 + 0.055)^2 = 500 \times 1.113025 = \$556.51 \] **Answer:** After the first 2 years, Zaki has **\$556.51** in the account. --- ### **b. New Balance After Depositing \$750** **Calculation:** \[ \text{New Balance} = \text{Previous Amount} + \text{Deposit} = 556.51 + 750 = \$1,306.51 \] **Answer:** After depositing \$750, the new balance is **\$1,306.51**. --- ### **c. Amount After the Next 3 Years (Before the \$1,300 Deposit)** **Calculation:** \[ A = P(1 + r)^n \] Where: - \( P = \$1,306.51 \) - \( r = 5.5\% = 0.055 \) - \( n = 3 \) years \[ A = 1,306.51 \times (1.055)^3 \approx 1,306.51 \times 1.17424 \approx \$1,534.14 \] **Answer:** At the end of the next 3 years, Zaki has **\$1,534.14** in the account. --- ### **d. New Balance After Depositing \$1,300** **Calculation:** \[ \text{New Balance} = \text{Previous Amount} + \text{Deposit} = 1,534.14 + 1,300 = \$2,834.14 \] **Answer:** After depositing \$1,300, the new balance is **\$2,834.14**. --- ### **e. Amount at the End of the 10-Year Period** **Calculation:** \[ A = P(1 + r)^n \] Where: - \( P = \$2,834.14 \) - \( r = 5.5\% = 0.055 \) - \( n = 5 \) years First, calculate \( (1.055)^5 \): \[ (1.055)^5 \approx 1.3064 \] Then, \[ A = 2,834.14 \times 1.3064 \approx \$3,702.61 \] **Answer:** At the end of 10 years, Zaki has **\$3,702.61** in the account. --- ### **f. Total Interest Earned** **Calculation:** \[ \text{Total Deposits} = 500 + 750 + 1,300 = \$2,550 \] \[ \text{Final Amount} = \$3,702.61 \] \[ \text{Interest Earned} = \text{Final Amount} - \text{Total Deposits} = 3,702.61 - 2,550 = \$1,152.61 \] **Answer:** Zaki earned **\$1,152.61** in interest over the 10-year period.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate Zaki's account balance and interest earned, let's break it down step by step. ### a. After the first 2 years (before new deposit): Zaki invests \$500 at an annual interest rate of 5.5%. The formula for calculating the future value with compound interest is: \[ A = P(1 + r)^t \] Where: - \( P \) = principal amount (\$500) - \( r \) = annual interest rate (5.5% or 0.055) - \( t \) = number of years (2) \[ A = 500(1 + 0.055)^2 = 500(1.113025) \approx 556.51 \] So, after 2 years, Zaki has approximately **\$556.51** in his account. ### b. After depositing \$750: Now, he deposits another \$750, so the new balance is: \[ 556.51 + 750 = 1306.51 \] Zaki's balance after this deposit is **\$1306.51**. ### c. At the end of the next 3 years (before new deposit): Using the same formula, we calculate the future value for the new balance over the next 3 years: \[ A = 1306.51(1 + 0.055)^3 \approx 1306.51(1.174617) \approx 1535.87 \] Thus, after the next 3 years, Zaki has approximately **\$1535.87** in the account. ### d. After depositing \$1,300: Now he deposits \$1,300, so the new balance is: \[ 1535.87 + 1300 = 2835.87 \] Now, Zaki's balance is **\$2835.87** after this deposit. ### e. At the end of the 5-year period: Finally, we calculate the total amount after letting it sit for 5 years: \[ A = 2835.87(1 + 0.055)^5 \approx 2835.87(1.302169) \approx 3690.52 \] Thus, after the full 10 years, Zaki has approximately **\$3690.52** in the account. ### f. Total interest earned: To find out how much Zaki earned in interest, we can use the formula: \[ \text{Interest} = \text{Final Amount} - \text{Total Deposits} \] The total deposits made by Zaki are: \[ 500 + 750 + 1300 = 2550 \] So, we calculate interest earned: \[ \text{Interest} = 3690.52 - 2550 = 1140.52 \] Zaki earned approximately **\$1140.52** in interest over the 10 years.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad