3) \( \left(\frac{1}{6}-\frac{1}{4}\right) \div\left(\frac{1}{3}+\frac{1}{4}\right) \) 4) \( 4 m^{2}+4 m+1 \) 5) \( (2 x+1)^{3} \) 6) \( \frac{1}{100}-p^{2} \) 7) \( 3 x y-6 x+5 m y-10 m \) 8) \( x^{2}-27+50 \) 9) \( m^{3}-1 \) \( (x+y)(x-y) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Let’s break these down into fun and digestible insights! Start with the fraction calculations! When you’re working with fractions, it’s super helpful to find a common denominator. For example, in \( \left(\frac{1}{6}-\frac{1}{4}\right) \), the common denominator would be 12. This means you'd convert both fractions: \( \frac{1}{6} = \frac{2}{12} \) and \( \frac{1}{4} = \frac{3}{12} \). Now it’s easy to compute! Polynomials like \( 4 m^{2}+4 m+1 \) can be factored! The goal is to express it as a product of two binomials. Here, it factors neatly to \( (2m + 1)(2m + 1) \) or \( (2m + 1)^2 \). This often makes it simpler to analyze or solve, so keep an eye out for those patterns!