Which of the following lines is contained in the domain of \[ f(x, y)=\sin ^{-1}(y-x-2) \text { ? } \] a. \( y=x-4 \) b. \( y=x+2 \) c. \( y=x \) d. \( y=x+4 \) e. \( y=-x-2 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find which lines are contained in the domain of the function \( f(x, y) = \sin^{-1}(y - x - 2) \), we need to ensure that \( y - x - 2 \) falls within the valid range of the inverse sine function, which is \([-1, 1]\). 1. For the line \( y = x - 4 \): \[ y - x - 2 = (x - 4) - x - 2 = -6 \] (not in the domain) 2. For the line \( y = x + 2 \): \[ y - x - 2 = (x + 2) - x - 2 = 0 \] (in the domain) 3. For the line \( y = x \): \[ y - x - 2 = x - x - 2 = -2 \] (not in the domain) 4. For the line \( y = x + 4 \): \[ y - x - 2 = (x + 4) - x - 2 = 2 \] (not in the domain) 5. For the line \( y = -x - 2 \): \[ y - x - 2 = (-x - 2) - x - 2 = -2x - 4 \] (this value can be outside the domain depending on x) So, the only line from the provided options that falls within the domain of the function is: b. \( y = x + 2 \)