Pregunta
upstudy study bank question image url

Determine whether the given function is one-to-one. If it is one-to-one, find a formula for the

A.
B.
C.

Ask by Vargas Bernard. in the United States
Nov 24,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The inverse function of is .

Solución

To determine whether the function is one-to-one, we need to check if it passes the horizontal line test or if it is strictly increasing or decreasing.
  1. Domain of : The function is defined for because the expression under the square root must be non-negative.
  2. Behavior of : The function is a square root function, which is always non-negative and increases as increases. Specifically, as increases from 3 to infinity, also increases from 0 to infinity. This indicates that the function is strictly increasing.
Since is strictly increasing, it is one-to-one.
  1. Finding the inverse: To find the inverse of , we set :
    Now, we solve for :
    Thus, the inverse function is:
    However, since the original function is defined for , the inverse function will be defined for (since outputs non-negative values).
  2. Conclusion: The correct inverse function is:
Thus, the answer is:
A. .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine if the function is one-to-one, we need to check if it passes the Horizontal Line Test. This function is defined for , and since it is increasing over this interval, it is indeed one-to-one.
Now, to find the inverse function, we start by setting . If we solve for , we get or . Therefore, the correct formula for the inverse function is , applicable for since the output of the original function is always non-negative.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad