Pregunta
The total revenue for Dante's Villas is given as the function \( R(x)=700 x-0.5 x^{2} \), where \( x \) is the number of villas rented. maximum revenue?
Ask by Fernandez Bartlett. in the United States
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
To find the maximum revenue, set the number of villas rented to 700, which gives a maximum revenue of \$245,000.
Solución
To determine the **maximum revenue** for Dante's Villas given the revenue function:
\[
R(x) = 700x - 0.5x^2
\]
where \( x \) is the number of villas rented, follow these steps:
### 1. Identify the Type of Function
The revenue function \( R(x) = -0.5x^2 + 700x \) is a **quadratic function** in the standard form \( R(x) = ax^2 + bx + c \), where:
- \( a = -0.5 \)
- \( b = 700 \)
- \( c = 0 \)
Since the coefficient of \( x^2 \) (**a**) is negative (\( a = -0.5 \)), the parabola opens **downwards**, indicating that the function has a **maximum point**.
### 2. Find the Number of Villas for Maximum Revenue
The vertex of a quadratic function \( ax^2 + bx + c \) occurs at:
\[
x = -\frac{b}{2a}
\]
Plugging in the values:
\[
x = -\frac{700}{2 \times (-0.5)} = -\frac{700}{-1} = 700
\]
So, **700 villas** need to be rented to achieve maximum revenue.
### 3. Calculate the Maximum Revenue
Substitute \( x = 700 \) back into the revenue function:
\[
R(700) = 700 \times 700 - 0.5 \times (700)^2
\]
\[
R(700) = 490,000 - 0.5 \times 490,000
\]
\[
R(700) = 490,000 - 245,000 = 245,000
\]
### **Conclusion**
The **maximum revenue** Dante's Villas can achieve is **\$245,000** when **700 villas** are rented.
**Summary:**
- **Number of Villas for Maximum Revenue:** 700
- **Maximum Revenue:** \$245,000
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To find the maximum revenue, we can use the formula for the vertex of a quadratic function, \( x = -\frac{b}{2a} \). Here, the revenue function is \( R(x) = 700x - 0.5x^2 \), where \( a = -0.5 \) and \( b = 700 \). Plugging in the values gives us \( x = -\frac{700}{2 \times -0.5} = 700 \). Therefore, the maximum revenue occurs when 700 villas are rented. To find the maximum revenue value, substitute \( x = 700 \) back into the revenue function: \[ R(700) = 700(700) - 0.5(700^2) = 490000 - 245000 = 245000. \] So, the maximum revenue is $245,000!
preguntas relacionadas
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium