The quotient rule for exponents states that \( \frac{b^{\text {m }}}{\mathrm{b}^{n}}=\square, \mathrm{t}=0 \). When dividing exponential expressions with the same nonzero base, \( \square \) the exponents.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
The quotient rule for exponents states that \( \frac{b^{m}}{b^{n}} = b^{m-n} \). This means when you divide two exponential expressions with the same base, you simply subtract the exponent of the denominator from the exponent of the numerator. For instance, if you have \( \frac{b^{5}}{b^{2}} \), according to the quotient rule, this simplifies to \( b^{5-2} = b^{3} \). A common mistake when using the quotient rule is to incorrectly apply it to bases that aren't the same or to forget that the base must stay constant. For example, if you mistakenly use \( \frac{2^{3}}{4^{1}} \), you're in trouble because the bases differ! Remember: always check your bases before diving into those exponents.