Pregunta
upstudy study bank question image url

Graph the function by using transformations of the graph of . Plot all necessary asymptotes. For vertical
asymptotes, make sure there are at least two points on each side.

Ask by Mckenzie Mcfarlane. in the United States
Mar 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph , reflect the graph of across the x-axis. The vertical asymptote is at and the horizontal asymptote is at . Plot points like , , , and , and draw the asymptotes.

Solución

To graph the function using transformations of the graph of , we can follow these steps:
  1. Identify the basic function: The graph of has a vertical asymptote at and a horizontal asymptote at .
  2. Apply transformations:
    • The negative sign in front of the function indicates a reflection across the x-axis. Therefore, the graph of will be a reflection of in the x-axis.
  3. Determine asymptotes:
    • The vertical asymptote remains at .
    • The horizontal asymptote also remains at .
  4. Plot points:
    • For , we can choose a few values of to find corresponding values:
      • If , then .
      • If , then .
      • If , then .
      • If , then .
  5. Graph the function:
    • We will plot the points and draw the asymptotes.
Now, let’s proceed to graph the function and include the necessary asymptotes.
Function by following steps:
  • step0: Find the range:
  • step1: Evaluate:

    Analyze the extrema of the function
    Function by following steps:
  • step0: Find the local extrema:
  • step1: Find the domain:
  • step2: Find the derivative:
  • step3: Find the domain:
  • step4: Substitute
  • step5: Swap the sides:
  • step6: Cross multiply:
  • step7: Simplify the equation:
  • step8: The statement is false:
  • step9: The function has no local extrema:

    Analyze the critical points of the function
    Function by following steps:
  • step0: Find the critical numbers:
  • step1: Find the domain:
  • step2: Find the derivative:
  • step3: Find the domain:
  • step4: Substitute
  • step5: Swap the sides:
  • step6: Cross multiply:
  • step7: Simplify the equation:
  • step8: The statement is false:
  • step9: Evaluate:

    It seems there was an issue retrieving the graph directly. However, I can summarize the characteristics of the function based on transformations and asymptotes:
  1. Domain: The function is defined for all real numbers except . Thus, the domain is .
  2. Range: The range of the function is also all real numbers except . Therefore, the range is .
  3. Asymptotes:
    • Vertical Asymptote:
    • Horizontal Asymptote:
  4. Critical Points and Extrema: There are no critical points or local extrema for this function.

Points to Plot:

Graphing Instructions:

  • Plot the points mentioned above.
  • Draw the vertical asymptote at (dashed line).
  • Draw the horizontal asymptote at (dashed line).
  • The graph will approach these asymptotes but never touch them.
If you have graphing software or a graphing calculator, you can input the function to visualize it. The graph will show two branches: one in the second quadrant and one in the fourth quadrant, reflecting the behavior of the function across the x-axis.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph the function , we start with the base function , which has a vertical asymptote at and a horizontal asymptote at . The transformation to involves a reflection across the x-axis due to the negative sign. This means that all points that were above the x-axis now fall below it. Thus, the vertical asymptote remains at , and the horizontal asymptote stays at .
Now, to plot the function, choose a few values of : for , ; for , . On the negative side, for , ; for , . This gives you points to mark: , , , and . Connect those points gently approaching the asymptotes! Voilà! You’ve transformed and graphed !
Don’t forget to observe the behavior as approaches the vertical asymptote. As approaches from the left, heads towards negative infinity, while from the right, it approaches positive infinity. This mirrored behavior around asymptotes creates a distinct “crossing the x-axis” pattern showcasing the transformations in action!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad