Pregunta
upstudy study bank question image url

b4) \( 4 p^{2}+7 p q-2 q^{2} \)

Ask by King Hanson. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( 4p^{2} + 7pq - 2q^{2} = (4p - q)(p + 2q) \)

Solución

To factor the quadratic expression \( 4p^{2} + 7pq - 2q^{2} \), follow these steps: ### Step 1: Set Up the Factoring Framework Assume the expression can be factored into the form: \[ ( ap + bq )( cp + dq ) \] where \( a, b, c, \) and \( d \) are constants to be determined. ### Step 2: Determine Coefficients For the expression \( 4p^{2} + 7pq - 2q^{2} \), we need: \[ a \cdot c = 4 \quad \text{(coefficient of } p^2 \text{)} \] \[ b \cdot d = -2 \quad \text{(constant term)} \] \[ a \cdot d + b \cdot c = 7 \quad \text{(coefficient of } pq \text{)} \] Let's try possible integer pairs for \( (a, c) \) and \( (b, d) \): - \( (a, c) = (4, 1) \) - To satisfy \( b \cdot d = -2 \), possible pairs are \( (1, -2) \) or \( (-1, 2) \) ### Step 3: Test the Combinations **First Combination:** \[ (a, c) = (4, 1) \quad \text{and} \quad (b, d) = (1, -2) \] \[ a \cdot d + b \cdot c = 4 \cdot (-2) + 1 \cdot 1 = -8 + 1 = -7 \quad (\text{Does not match } 7) \] **Second Combination:** \[ (a, c) = (4, 1) \quad \text{and} \quad (b, d) = (-1, 2) \] \[ a \cdot d + b \cdot c = 4 \cdot 2 + (-1) \cdot 1 = 8 - 1 = 7 \quad (\text{Matches}) \] ### Step 4: Write the Factored Form Using the second combination: \[ 4p^{2} + 7pq - 2q^{2} = (4p - q)(p + 2q) \] ### Verification Multiply the factors to verify: \[ (4p - q)(p + 2q) = 4p \cdot p + 4p \cdot 2q - q \cdot p - q \cdot 2q = 4p^{2} + 8pq - pq - 2q^{2} = 4p^{2} + 7pq - 2q^{2} \] The multiplication confirms that the factoring is correct. **Final Answer:** \[ 4p^{2} + 7pq - 2q^{2} = (4p - q)(p + 2q) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that polynomials like \( 4 p^{2}+7 p q-2 q^{2} \) are not just abstract concepts; they're vital in various fields such as physics and engineering? They help model everything from projectile motion to electrical circuits. So next time you see a polynomial, think of it as a tool for describing the universe around us! When factoring polynomials, one common mistake is overlooking the greatest common factor (GCF). Always check if there's a GCF before starting. Additionally, be careful of sign errors, especially with negative terms. Breaking down the polynomial step by step can prevent these slips and ensure you're on the right path!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad