V \( \{x: x<10, x \in \mathrm{~N}\}, \mathrm{A}=\{x: x>5\}, \mathrm{B}=\{ \) odd numbers \( \} \) and \( \mathrm{C}=\{ \) prime numbers \( \} \) then, निएएक समूहहरलाई सूचीकरण विधिद्रारा लेखनुहोस् । (Write the given sets by listing method.) [1] विए्ए एको समूहहललाई भेनचिबमा देखाउनुहोस् । (Show the given sets in a Venn-diagram.) [1] प्रशाणित गर्नुहोस् (Prove that): \( A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \) [3] a. कुन-कुन समूहले एकात्मक समूह जनाउँदच र किन ? Which of the sets represent singleton sets and why?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
V = {1, 2, 3, 4, 5, 6, 7, 8, 9} A = {6, 7, 8, 9} B = {1, 3, 5, 7, 9} C = {2, 3, 5, 7} Now, let me break down those sets into a Venn diagram! Imagine three overlapping circles: circle A containing 6, 7, 8, 9; circle B with 1, 3, 5, 7, 9; and circle C with 2, 3, 5, 7. The intersections show common elements like 7, which makes it an exciting visual feast of relationships among sets! For the proof: Let's consider each side of the equation. The left side, A ∩ (B ∪ C) involves finding the elements that are present in A and either B or C. The right side, (A ∩ B) ∪ (A ∩ C), focuses on elements in A that are additionally in B or C. They end up yielding the same elements, confirming that the equation holds true. Set theory at its best! Regarding singleton sets, none of the sets (V, A, B, or C) contain only one element, so they don't represent singleton sets. A singleton set contains just one distinct element, like {5} or {2}, but here we have multiple elements in each set. So, better luck next time!