Pregunta
upstudy study bank question image url

2.1 Determine \( n \) if \( \sum_{k=1}^{n}(-8)\left(\frac{1}{2}\right)^{k-1}=-\frac{63}{4} \)

Ask by Coleman Lane. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( n = 6 \)

Solución

To determine the value of \( n \) in the equation: \[ \sum_{k=1}^{n} (-8) \left( \frac{1}{2} \right)^{k-1} = -\frac{63}{4} \] we recognize that this is the sum of a geometric series. The general formula for the sum of the first \( n \) terms of a geometric series is: \[ S_n = a \frac{1 - r^n}{1 - r} \] where: - \( a \) is the first term, - \( r \) is the common ratio, - \( n \) is the number of terms. **Given:** - First term \( a = -8 \), - Common ratio \( r = \frac{1}{2} \), - Sum \( S_n = -\frac{63}{4} \). Substituting these values into the formula: \[ -8 \cdot \frac{1 - \left( \frac{1}{2} \right)^n}{1 - \frac{1}{2}} = -\frac{63}{4} \] Simplify the denominator: \[ -8 \cdot \frac{1 - \left( \frac{1}{2} \right)^n}{\frac{1}{2}} = -\frac{63}{4} \] Multiply by \( 2 \) to eliminate the fraction in the denominator: \[ -16 \left( 1 - \left( \frac{1}{2} \right)^n \right) = -\frac{63}{4} \] Divide both sides by \( -16 \): \[ 1 - \left( \frac{1}{2} \right)^n = \frac{63}{64} \] Solve for \( \left( \frac{1}{2} \right)^n \): \[ \left( \frac{1}{2} \right)^n = 1 - \frac{63}{64} = \frac{1}{64} \] Recognizing that \( \frac{1}{64} = \left( \frac{1}{2} \right)^6 \), we set the exponents equal: \[ n = 6 \] **Answer:** \( n = 6 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine \( n \) in the equation \( \sum_{k=1}^{n}(-8)\left(\frac{1}{2}\right)^{k-1}=-\frac{63}{4} \), we recognize that the left-hand side is a geometric series. The series can be expressed as: \[ S_n = -8 \sum_{k=1}^{n} \left(\frac{1}{2}\right)^{k-1} \] The sum of a geometric series can be calculated using the formula: \[ S_n = a \frac{1 - r^n}{1 - r} \] where \( a \) is the first term and \( r \) is the common ratio. Here, \( a = -8 \) and \( r = \frac{1}{2} \). Substituting these values, we get: \[ S_n = -8 \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} = -8 \frac{1 - \left(\frac{1}{2}\right)^n}{\frac{1}{2}} = -16 \left(1 - \left(\frac{1}{2}\right)^n\right) \] Now we set this equal to \(-\frac{63}{4}\): \[ -16 \left(1 - \left(\frac{1}{2}\right)^n\right) = -\frac{63}{4} \] Dividing both sides by -1, we have: \[ 16 \left(1 - \left(\frac{1}{2}\right)^n\right) = \frac{63}{4} \] Next, we divide both sides by 16: \[ 1 - \left(\frac{1}{2}\right)^n = \frac{63}{4 \times 16} = \frac{63}{64} \] This simplifies to: \[ 1 - \left(\frac{1}{2}\right)^n = \frac{63}{64} \] Subtracting 1 from both sides: \[ -\left(\frac{1}{2}\right)^n = \frac{63}{64} - 1 \] Calculating the right side gives: \[ \frac{63}{64} - \frac{64}{64} = -\frac{1}{64} \] Thus, we have: \[ -\left(\frac{1}{2}\right)^n = -\frac{1}{64} \] Removing the negative sign from both sides, we find: \[ \left(\frac{1}{2}\right)^n = \frac{1}{64} \] Recognizing that \(64 = 2^6\), we can rewrite the right side as: \[ \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^6 \] Since the bases are the same, we can equate the exponents: \[ n = 6 \] Hence, the solution is: \[ \boxed{6} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad