Pregunta
upstudy study bank question image url

2900 dollars is placed in an account with an annual interest rate of \( 9 \% \). How much will be in the account after 13 years, to the nearest cent?

Ask by Griffiths Matthews. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 13 years, the account will have approximately $8,890.83.

Solución

To find out how much will be in the account after 13 years, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{100}\right)^n \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (initial amount of money). - \( r \) is the annual interest rate (in %). - \( n \) is the number of years. Given: - \( P = 2900 \) dollars - \( r = 9\% \) - \( n = 13 \) years Substitute the values into the formula: \[ A = 2900 \left(1 + \frac{9}{100}\right)^{13} \] Now, we can calculate the amount of money accumulated after 13 years using the formula. Calculate the value by following steps: - step0: Calculate: \(2900\left(1+\frac{9}{100}\right)^{13}\) - step1: Add the numbers: \(2900\left(\frac{109}{100}\right)^{13}\) - step2: Simplify: \(2900\times \frac{109^{13}}{100^{13}}\) - step3: Rewrite the expression: \(100\times 29\times \frac{109^{13}}{100^{13}}\) - step4: Reduce the numbers: \(29\times \frac{109^{13}}{100^{12}}\) - step5: Multiply: \(\frac{29\times 109^{13}}{100^{12}}\) The amount of money accumulated after 13 years, to the nearest cent, is approximately $8890.83.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the future value of the account using compound interest, you can use the formula: \[ A = P(1 + r)^n \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of years the money is invested for. For your case: - \( P = 2900 \) - \( r = 0.09 \) - \( n = 13 \) Plugging in the values: \[ A = 2900(1 + 0.09)^{13} \] Calculating this gives: \[ A \approx 2900(1.09)^{13} \] \[ A \approx 2900 \times 3.478 \] \[ A \approx 10038.35 \] So, after 13 years, the amount in the account will be approximately **$10,038.35**. Now, let’s dive into some engaging insights! Investing in accounts with a solid interest rate can really turbocharge your savings! Imagine putting your money to work for you while you focus on other fun things, like planning that epic trip you've been dreaming about. Even small amounts can grow into impressive amounts over time thanks to the magic of compound interest—money earning money! If you’re new to investing, watch out for common mistakes like not reviewing your interest compounding frequency. Some accounts compound annually, while others might do it monthly or even daily, which can lead to a bigger pot at the end. Always make sure to choose the option that maximizes your returns and fit your financial goals!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad