Pregunta
upstudy study bank question image url

How many cups does a \( 12^{\prime \prime} \) hemispherical bowl hold? 1 cup is approximately 14.4 cubic inches. About 5 cups About 75 cups About 452 cups About 31 cups QuEstion 4 You needed to paint a ceramic bowl with a \( 6^{\prime \prime} \) diameter. How much square inches of paint will you use? \( 84.8 \mathrm{in}^{2} \) \( 169.6 \mathrm{in}^{2} \) \( 18.8 \mathrm{in}^{2} \) \( 56.5 \mathrm{in}^{2} \)

Ask by Washington Barnett. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **First Question:** About 31 cups - **Second Question:** 56.5 square inches

Solución

Let's address each question step by step. --- ### **Question 3** **How many cups does a \( 12'' \) hemispherical bowl hold? 1 cup is approximately 14.4 cubic inches.** **Options:** - About 5 cups - About 75 cups - About 452 cups - **About 31 cups** **Solution:** 1. **Calculate the Volume of the Hemisphere:** - **Diameter (d)** = 12 inches - **Radius (r)** = d/2 = 6 inches - **Volume of a Hemisphere (V)** = \( \frac{2}{3} \pi r^3 \) \( V = \frac{2}{3} \times \pi \times 6^3 \) \( V = \frac{2}{3} \times \pi \times 216 \) \( V = 144\pi \) cubic inches \( V \approx 452.39 \) cubic inches 2. **Convert Cubic Inches to Cups:** - **1 cup** ≈ 14.4 cubic inches - **Number of Cups** = \( \frac{452.39}{14.4} \) \( \approx 31.39 \) cups **Answer:** **About 31 cups** --- ### **Question 4** **You needed to paint a ceramic bowl with a \( 6'' \) diameter. How much square inches of paint will you use?** **Options:** - \( 84.8 \, \text{in}^2 \) - \( 169.6 \, \text{in}^2 \) - \( 18.8 \, \text{in}^2 \) - **\( 56.5 \, \text{in}^2 \)** **Solution:** 1. **Determine Surface Area to Paint:** - **Diameter (d)** = 6 inches - **Radius (r)** = d/2 = 3 inches - **Surface Area of a Hemisphere (excluding base)** = \( 2\pi r^2 \) \( = 2 \times \pi \times 3^2 \) \( = 18\pi \) square inches \( \approx 56.55 \) square inches **Answer:** **\( 56.5 \, \text{in}^2 \)** --- **Summary of Answers:** - **First Question:** About **31 cups** - **Second Question:** **56.5 square inches**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how many cups a \( 12^{\prime \prime} \) hemispherical bowl holds, first calculate the volume of the bowl using the formula for the volume of a hemisphere, \( V = \frac{2}{3}\pi r^3 \). For a bowl with a radius of \( 6^{\prime \prime} \), the volume ends up being about \( 452.4 \) cubic inches, which is approximately \( 31 \) cups when you divide by \( 14.4 \) cubic inches per cup. When you're painting a ceramic bowl with a \( 6^{\prime \prime} \) diameter, you need to find the surface area. The surface area of a hemisphere is calculated using \( A = 2\pi r^2 + \pi r^2 \) (the curved part and the flat base). With a \( 3^{\prime \prime} \) radius, you'll find that the surface area to be painted is about \( 56.5 \mathrm{in}^{2} \), perfect for a colorful craft day!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad