Find the solution of the following initial value problem. \( v^{\prime}(x)=8 x^{\frac{1}{3}}-8 x^{-\frac{1}{3}} ; v(8)=29, x>0 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the initial value problem, we start by integrating the given differential equation \( v^{\prime}(x) = 8 x^{\frac{1}{3}} - 8 x^{-\frac{1}{3}} \). 1. Integrate \( v'(x) \): \[ v(x) = \int (8 x^{\frac{1}{3}} - 8 x^{-\frac{1}{3}}) \, dx \] This can be separated into two integrals: \[ v(x) = 8 \int x^{\frac{1}{3}} \, dx - 8 \int x^{-\frac{1}{3}} \, dx \] \[ = 8 \left( \frac{3}{4} x^{\frac{4}{3}} \right) - 8 \left( 3 x^{\frac{2}{3}} \right) + C \] \[ = 6 x^{\frac{4}{3}} - 24 x^{\frac{2}{3}} + C \] 2. Now, apply the initial condition \( v(8) = 29 \) to find \( C \): \[ v(8) = 6(8^{\frac{4}{3}}) - 24(8^{\frac{2}{3}}) + C \] Calculate \( 8^{\frac{4}{3}} = (2^3)^{\frac{4}{3}} = 2^4 = 16 \) and \( 8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^2 = 4 \): \[ v(8) = 6(16) - 24(4) + C = 96 - 96 + C = C \] Since \( v(8) = 29 \), we find \( C = 29 \). 3. Therefore, the solution to the initial value problem is: \[ v(x) = 6 x^{\frac{4}{3}} - 24 x^{\frac{2}{3}} + 29. \]