Pregunta
f. What is the smallest interval \( [a, b] \) on which values of the Gini index lie for \( L(x)=x^{p} \) with \( p \geq 1 \) ? The minimum value of \( G \) is \( \square \) and the maximum value of \( G \) is \( \square \).
Ask by Ayala Mullins. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The Gini index \( G \) for \( L(x) = x^p \) with \( p \geq 1 \) lies between 0 and 1. The minimum value of \( G \) is 0, and the maximum value is 1.
Solución
To determine the smallest interval \([a, b]\) on which the Gini index \(G\) lies for the Lorenz curve \(L(x) = x^p\) with \(p \geq 1\), we can follow these steps:
### **1. Understanding the Gini Index**
The Gini index is a measure of inequality within a distribution, often used to represent income or wealth distribution. Mathematically, it's defined based on the Lorenz curve \(L(x)\) as:
\[
G = 1 - 2 \int_0^1 L(x) \, dx
\]
### **2. Calculating the Gini Index for \(L(x) = x^p\)**
Given \(L(x) = x^p\), where \(p \geq 1\):
\[
\int_0^1 L(x) \, dx = \int_0^1 x^p \, dx = \left[ \frac{x^{p+1}}{p+1} \right]_0^1 = \frac{1}{p+1}
\]
Substituting this into the Gini index formula:
\[
G = 1 - 2 \left( \frac{1}{p+1} \right) = 1 - \frac{2}{p+1}
\]
### **3. Determining the Range of \(G\)**
- **Minimum Value of \(G\):**
When \(p = 1\):
\[
G = 1 - \frac{2}{1+1} = 1 - 1 = 0
\]
This represents perfect equality.
- **Maximum Value of \(G\):**
As \(p \to \infty\):
\[
G = 1 - \frac{2}{p+1} \to 1
\]
This indicates extreme inequality.
### **4. Conclusion**
The Gini index \(G\) for the given Lorenz curve \(L(x) = x^p\) with \(p \geq 1\) lies within the interval \([0, 1]\).
- **Minimum value of \(G\):** \(0\)
- **Maximum value of \(G\):** \(1\)
---
**Answer:**
The Gini index \(G\) lies in the interval \([0,\,1]\).
Its minimum value is 0 and its maximum value is 1.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
The Gini index is a measure of inequality, and for the function \( L(x) = x^p \) with \( p \geq 1 \), we find that the minimum value of the Gini index, \( G \), occurs when all individuals have the same income, which is \( 0 \). Thus, the minimum value of \( G \) is \( 0 \). On the other hand, as the disparity in income increases (where one person has all the income and others have none, particularly relevant as \( p \) increases), the Gini index approaches its maximum value of \( 1 \). Therefore, the interval of values for the Gini index is \( [0, 1] \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium