Pregunta
upstudy study bank question image url

f. What is the smallest interval \( [a, b] \) on which values of the Gini index lie for \( L(x)=x^{p} \) with \( p \geq 1 \) ? The minimum value of \( G \) is \( \square \) and the maximum value of \( G \) is \( \square \).

Ask by Ayala Mullins. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The Gini index \( G \) for \( L(x) = x^p \) with \( p \geq 1 \) lies between 0 and 1. The minimum value of \( G \) is 0, and the maximum value is 1.

Solución

To determine the smallest interval \([a, b]\) on which the Gini index \(G\) lies for the Lorenz curve \(L(x) = x^p\) with \(p \geq 1\), we can follow these steps: ### **1. Understanding the Gini Index** The Gini index is a measure of inequality within a distribution, often used to represent income or wealth distribution. Mathematically, it's defined based on the Lorenz curve \(L(x)\) as: \[ G = 1 - 2 \int_0^1 L(x) \, dx \] ### **2. Calculating the Gini Index for \(L(x) = x^p\)** Given \(L(x) = x^p\), where \(p \geq 1\): \[ \int_0^1 L(x) \, dx = \int_0^1 x^p \, dx = \left[ \frac{x^{p+1}}{p+1} \right]_0^1 = \frac{1}{p+1} \] Substituting this into the Gini index formula: \[ G = 1 - 2 \left( \frac{1}{p+1} \right) = 1 - \frac{2}{p+1} \] ### **3. Determining the Range of \(G\)** - **Minimum Value of \(G\):** When \(p = 1\): \[ G = 1 - \frac{2}{1+1} = 1 - 1 = 0 \] This represents perfect equality. - **Maximum Value of \(G\):** As \(p \to \infty\): \[ G = 1 - \frac{2}{p+1} \to 1 \] This indicates extreme inequality. ### **4. Conclusion** The Gini index \(G\) for the given Lorenz curve \(L(x) = x^p\) with \(p \geq 1\) lies within the interval \([0, 1]\). - **Minimum value of \(G\):** \(0\) - **Maximum value of \(G\):** \(1\) --- **Answer:** The Gini index \(G\) lies in the interval \([0,\,1]\). Its minimum value is 0 and its maximum value is 1.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The Gini index is a measure of inequality, and for the function \( L(x) = x^p \) with \( p \geq 1 \), we find that the minimum value of the Gini index, \( G \), occurs when all individuals have the same income, which is \( 0 \). Thus, the minimum value of \( G \) is \( 0 \). On the other hand, as the disparity in income increases (where one person has all the income and others have none, particularly relevant as \( p \) increases), the Gini index approaches its maximum value of \( 1 \). Therefore, the interval of values for the Gini index is \( [0, 1] \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad