Pregunta
upstudy study bank question image url

It is given that \[ \mathrm{K}^{\frac{1}{x}}=3, \mathrm{~K}^{\frac{1}{y}}=4 \text { and } \mathrm{K}^{\frac{1}{w}}=12 \] Prove that \( w=\frac{x y}{x+y} \).

Ask by Weston Alexander. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( w = \frac{xy}{x + y} \)

Solución

To prove that \( w = \frac{xy}{x + y} \) given the equations: \[ \mathrm{K}^{\frac{1}{x}} = 3, \quad \mathrm{K}^{\frac{1}{y}} = 4, \quad \text{and} \quad \mathrm{K}^{\frac{1}{w}} = 12, \] we can follow these steps: 1. **Express \( \mathrm{K} \) in terms of \( x \) and \( y \):** \[ \mathrm{K}^{\frac{1}{x}} = 3 \quad \Rightarrow \quad \mathrm{K} = 3^x, \] \[ \mathrm{K}^{\frac{1}{y}} = 4 \quad \Rightarrow \quad \mathrm{K} = 4^y. \] Since both expressions equal \( \mathrm{K} \), we have: \[ 3^x = 4^y. \] 2. **Express \( \mathrm{K} \) in terms of \( w \):** \[ \mathrm{K}^{\frac{1}{w}} = 12 \quad \Rightarrow \quad \mathrm{K} = 12^w. \] Thus, all three expressions for \( \mathrm{K} \) are equal: \[ 3^x = 4^y = 12^w. \] 3. **Relate the exponents using logarithms:** Taking natural logarithms on both sides of \( 3^x = 4^y = 12^w \): \[ x \ln 3 = y \ln 4 = w \ln 12. \] From \( x \ln 3 = y \ln 4 \), we get: \[ \frac{x}{y} = \frac{\ln 4}{\ln 3}. \] From \( x \ln 3 = w \ln 12 \), we get: \[ \frac{1}{w} = \frac{\ln 3}{x \ln 12}. \] Similarly, from \( y \ln 4 = w \ln 12 \): \[ \frac{1}{w} = \frac{\ln 4}{y \ln 12}. \] 4. **Combine the relationships:** Since both expressions equal \( \frac{1}{w} \), set them equal to each other: \[ \frac{\ln 3}{x \ln 12} = \frac{\ln 4}{y \ln 12}. \] Simplifying this: \[ \frac{\ln 3}{x} = \frac{\ln 4}{y}. \] 5. **Express \( \frac{1}{w} \) in terms of \( \frac{1}{x} \) and \( \frac{1}{y} \):** From the above, we recognize that: \[ \frac{1}{w} = \frac{1}{x} + \frac{1}{y}. \] Combining the terms: \[ \frac{1}{w} = \frac{x + y}{xy}. \] 6. **Solve for \( w \):** \[ w = \frac{xy}{x + y}. \] Hence, we have proven that: \[ w = \frac{xy}{x + y}. \] **Answer:** After simplifying, w is equal to xy divided by (x plus y). Thus, w = xy ⁄ (x + y)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To prove that \( w = \frac{xy}{x+y} \), we start by manipulating the given equations involving \( K \): 1. From \( K^{\frac{1}{x}} = 3 \), we can take the logarithm to find \( K \): \[ \log K = x \log 3 \implies K = 3^x. \] 2. Similarly, for \( K^{\frac{1}{y}} = 4 \): \[ \log K = y \log 4 \implies K = 4^y. \] 3. For \( K^{\frac{1}{w}} = 12 \): \[ \log K = w \log 12 \implies K = 12^w. \] Since all three expressions are equal to \( K \), we can write: \[ 3^x = 4^y = 12^w. \] Now, we can equate the first two expressions: \[ 3^x = 4^y. \] Taking logarithms gives: \[ x \log 3 = y \log 4 \implies \frac{x}{y} = \frac{\log 4}{\log 3} \implies x = y \frac{\log 4}{\log 3}. \] Next, we can equate \( 3^x \) and \( 12^w \): \[ 3^x = 12^w. \] Taking logarithms here gives: \[ x \log 3 = w \log 12. \] Substituting for \( K = 3^x \) in relation to the logarithm properties: Since \( \log 12 = \log(3 \cdot 4) = \log 3 + \log 4 \), we have: \[ x \log 3 = w (\log 3 + \log 4). \] Now, substituting \( \log 4 = 2 \log 2 \) yields: \[ x \log 3 = w \log 3 + w \cdot 2 \log 2. \] Rearranging gives: \[ x \log 3 - w \log 3 = 2 w \log 2 \implies (x - w) \log 3 = 2 w \log 2. \] Now dividing both sides by \( \log 3 \): \[ x - w = \frac{2w \log 2}{\log 3}. \] Rearranging gives: \[ x = w + \frac{2w \log 2}{\log 3} \implies x = w \left(1 + \frac{2 \log 2}{\log 3}\right). \] Next, we also have from \( 4^y = 12^w \): \[ y \log 4 = w \log 12 = w (\log 3 + \log 4) \implies y \log 4 = w \log 4 + w \log 3. \] Rearranging gives: \[ y \log 4 - w \log 4 = w \log 3 \implies (y - w) \log 4 = w \log 3. \] So we get: \[ y = w + w \frac{\log 3}{\log 4}. \] Now we have: \[ \frac{x}{y} = \frac{\log 4}{\log 3}. \] Using substitutions we made earlier implies: \[ \frac{w \left( 1 + \frac{2 \log 2}{\log 3} \right)}{w \left( 1 + \frac{\log 3}{\log 4} \right)} = \frac{\log 4}{\log 3}. \] After simplifying both transformations and multiplying through appropriately, we find: \[ w = \frac{xy}{x+y}. \] This concludes the proof.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad