Responder
1. \( (2x + y)(3x^2 + 2xy + 5y^2) = 6x^3 + 7x^2y + 12xy^2 + 5y^3 \)
2. \( (x - y)(3x - 2xy + 4) = 3x^2 - 2x^2y + 4x - 3xy + 2y^2x - 4y \)
3. \( (7m - 3n)(5m^2 - 2mn - 7n^2) = 35m^3 - 29m^2n - 43mn^2 + 21n^3 \)
4. \( (2x - y)(4x^2 + 2xy - y^2) = 8x^3 - 4xy^2 + y^3 \)
5. \( (4m - n)(2m^2 - 3mn - n^2) = 8m^3 - 14m^2n - mn^2 + n^3 \)
6. \( (2x - y)(2x + y)(3x - 5xy - y) = 12x^3 - 20x^3y - 4x^2y - 3y^2x + 5y^3x + y^3 \)
7. \( (9m - n)(3m^2 - mn + 2n^2) = 27m^3 - 12m^2n + 19mn^2 - 2n^3 \)
8. \( 15.5(a - b)(a^2 + ab + b^2) = \frac{31}{2}a^3 - \frac{31}{2}b^3 \)
9. \( 2(3p + q)(9p^2 - 3pq + q^2) = 54p^3 + 2q^3 \)
10. \( 3(2x + 1)(x^2 - 5x - 1) = 6x^3 - 27x^2 - 21x - 3 \)
Solución
Simplify the expression by following steps:
- step0: Calculate:
\(2\left(3p+q\right)\left(9p^{2}-3pq+q^{2}\right)\)
- step1: Simplify the product:
\(2\left(27p^{3}+q^{3}\right)\)
- step2: Calculate:
\(54p^{3}+2q^{3}\)
Expand the expression \( 15.5(a-b)(a^{2}+a b+b^{2}) \)
Simplify the expression by following steps:
- step0: Calculate:
\(15.5\left(a-b\right)\left(a^{2}+ab+b^{2}\right)\)
- step1: Multiply the terms:
\(\left(15.5a-15.5b\right)\left(a^{2}+ab+b^{2}\right)\)
- step2: Factor the expression:
\(\frac{31}{2}\left(a-b\right)\left(a^{2}+ab+b^{2}\right)\)
- step3: Simplify the product:
\(\frac{31}{2}\left(a^{3}-b^{3}\right)\)
- step4: Calculate:
\(\frac{31}{2}a^{3}-\frac{31}{2}b^{3}\)
Expand the expression \( (x-y)(3 x-2 x y+4) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(x-y\right)\left(3x-2xy+4\right)\)
- step1: Apply the distributive property:
\(x\times 3x-x\times 2xy+x\times 4-y\times 3x-\left(-y\times 2xy\right)-y\times 4\)
- step2: Multiply the terms:
\(3x^{2}-2x^{2}y+4x-3yx-\left(-2y^{2}x\right)-4y\)
- step3: Remove the parentheses:
\(3x^{2}-2x^{2}y+4x-3yx+2y^{2}x-4y\)
Expand the expression \( (4 m-n)(2 m^{2}-3 m n-n^{2}) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(4m-n\right)\left(2m^{2}-3mn-n^{2}\right)\)
- step1: Apply the distributive property:
\(4m\times 2m^{2}-4m\times 3mn-4mn^{2}-n\times 2m^{2}-\left(-n\times 3mn\right)-\left(-n\times n^{2}\right)\)
- step2: Multiply the terms:
\(8m^{3}-12m^{2}n-4mn^{2}-2nm^{2}-\left(-3n^{2}m\right)-\left(-n^{3}\right)\)
- step3: Remove the parentheses:
\(8m^{3}-12m^{2}n-4mn^{2}-2nm^{2}+3n^{2}m+n^{3}\)
- step4: Subtract the terms:
\(8m^{3}-14m^{2}n-mn^{2}+n^{3}\)
Expand the expression \( (9 m-n)(3 m^{2}-m n+2 n^{2}) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(9m-n\right)\left(3m^{2}-mn+2n^{2}\right)\)
- step1: Apply the distributive property:
\(9m\times 3m^{2}-9m\times mn+9m\times 2n^{2}-n\times 3m^{2}-\left(-nmn\right)-n\times 2n^{2}\)
- step2: Multiply the terms:
\(27m^{3}-9m^{2}n+18mn^{2}-3nm^{2}-\left(-n^{2}m\right)-2n^{3}\)
- step3: Remove the parentheses:
\(27m^{3}-9m^{2}n+18mn^{2}-3nm^{2}+n^{2}m-2n^{3}\)
- step4: Subtract the terms:
\(27m^{3}-12m^{2}n+19mn^{2}-2n^{3}\)
Expand the expression \( 3(2 x+1)(x^{2}-5 x-1) \)
Simplify the expression by following steps:
- step0: Calculate:
\(3\left(2x+1\right)\left(x^{2}-5x-1\right)\)
- step1: Multiply the terms:
\(\left(6x+3\right)\left(x^{2}-5x-1\right)\)
- step2: Apply the distributive property:
\(6x\times x^{2}-6x\times 5x-6x\times 1+3x^{2}-3\times 5x-3\times 1\)
- step3: Multiply the terms:
\(6x^{3}-30x^{2}-6x+3x^{2}-15x-3\)
- step4: Add the terms:
\(6x^{3}-27x^{2}-21x-3\)
Expand the expression \( (2 x-y)(2 x+y)(3 x-5 x y-y) \)
Simplify the expression by following steps:
- step0: Calculate:
\(\left(2x-y\right)\left(2x+y\right)\left(3x-5xy-y\right)\)
- step1: Multiply the terms:
\(\left(4x^{2}-y^{2}\right)\left(3x-5xy-y\right)\)
- step2: Apply the distributive property:
\(4x^{2}\times 3x-4x^{2}\times 5xy-4x^{2}y-y^{2}\times 3x-\left(-y^{2}\times 5xy\right)-\left(-y^{2}\times y\right)\)
- step3: Multiply the terms:
\(12x^{3}-20x^{3}y-4x^{2}y-3y^{2}x-\left(-5y^{3}x\right)-\left(-y^{3}\right)\)
- step4: Remove the parentheses:
\(12x^{3}-20x^{3}y-4x^{2}y-3y^{2}x+5y^{3}x+y^{3}\)
Expand the expression \( (7 m-3 n)(5 m^{2}-2 m n-7 n^{2}) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(7m-3n\right)\left(5m^{2}-2mn-7n^{2}\right)\)
- step1: Apply the distributive property:
\(7m\times 5m^{2}-7m\times 2mn-7m\times 7n^{2}-3n\times 5m^{2}-\left(-3n\times 2mn\right)-\left(-3n\times 7n^{2}\right)\)
- step2: Multiply the terms:
\(35m^{3}-14m^{2}n-49mn^{2}-15nm^{2}-\left(-6n^{2}m\right)-\left(-21n^{3}\right)\)
- step3: Remove the parentheses:
\(35m^{3}-14m^{2}n-49mn^{2}-15nm^{2}+6n^{2}m+21n^{3}\)
- step4: Subtract the terms:
\(35m^{3}-29m^{2}n-43mn^{2}+21n^{3}\)
Expand the expression \( (2 x-y)(4 x^{2}+2 x y-y^{2}) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(2x-y\right)\left(4x^{2}+2xy-y^{2}\right)\)
- step1: Apply the distributive property:
\(2x\times 4x^{2}+2x\times 2xy-2xy^{2}-y\times 4x^{2}-y\times 2xy-\left(-y\times y^{2}\right)\)
- step2: Multiply the terms:
\(8x^{3}+4x^{2}y-2xy^{2}-4yx^{2}-2y^{2}x-\left(-y^{3}\right)\)
- step3: Remove the parentheses:
\(8x^{3}+4x^{2}y-2xy^{2}-4yx^{2}-2y^{2}x+y^{3}\)
- step4: Subtract the terms:
\(8x^{3}+0-2xy^{2}-2y^{2}x+y^{3}\)
- step5: Remove 0:
\(8x^{3}-2xy^{2}-2y^{2}x+y^{3}\)
- step6: Subtract the terms:
\(8x^{3}-4xy^{2}+y^{3}\)
Expand the expression \( (2 x+y)(3 x^{2}+2 x y+5 y^{2}) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(2x+y\right)\left(3x^{2}+2xy+5y^{2}\right)\)
- step1: Apply the distributive property:
\(2x\times 3x^{2}+2x\times 2xy+2x\times 5y^{2}+y\times 3x^{2}+y\times 2xy+y\times 5y^{2}\)
- step2: Multiply the terms:
\(6x^{3}+4x^{2}y+10xy^{2}+3yx^{2}+2y^{2}x+5y^{3}\)
- step3: Add the terms:
\(6x^{3}+7x^{2}y+12xy^{2}+5y^{3}\)
Here are the fully simplified results for each of the expressions:
1. **Expression:** \( (2 x+y)(3 x^{2}+2 x y+5 y^{2}) \)
**Simplified Result:** \( 6x^{3}+7x^{2}y+12xy^{2}+5y^{3} \)
2. **Expression:** \( (x-y)(3 x-2 x y+4) \)
**Simplified Result:** \( 3x^{2}-2x^{2}y+4x-3yx+2y^{2}x-4y \)
3. **Expression:** \( (7 m-3 n)(5 m^{2}-2 m n-7 n^{2}) \)
**Simplified Result:** \( 35m^{3}-29m^{2}n-43mn^{2}+21n^{3} \)
4. **Expression:** \( (2 x-y)(4 x^{2}+2 x y-y^{2}) \)
**Simplified Result:** \( 8x^{3}-4xy^{2}+y^{3} \)
5. **Expression:** \( (4 m-n)(2 m^{2}-3 m n-n^{2}) \)
**Simplified Result:** \( 8m^{3}-14m^{2}n-mn^{2}+n^{3} \)
6. **Expression:** \( (2 x-y)(2 x+y)(3 x-5 x y-y) \)
**Simplified Result:** \( 12x^{3}-20x^{3}y-4x^{2}y-3y^{2}x+5y^{3}x+y^{3} \)
7. **Expression:** \( (9 m-n)(3 m^{2}-m n+2 n^{2}) \)
**Simplified Result:** \( 27m^{3}-12m^{2}n+19mn^{2}-2n^{3} \)
8. **Expression:** \( 15.5(a-b)(a^{2}+a b+b^{2}) \)
**Simplified Result:** \( \frac{31}{2}a^{3}-\frac{31}{2}b^{3} \)
9. **Expression:** \( 2(3 p+q)(9 p^{2}-3 p q+q^{2}) \)
**Simplified Result:** \( 54p^{3}+2q^{3} \)
10. **Expression:** \( 3(2 x+1)(x^{2}-5 x-1) \)
**Simplified Result:** \( 6x^{3}-27x^{2}-21x-3 \)
If you need further assistance or explanations for any specific expression, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución