Pregunta
upstudy study bank question image url

EXERCISE 4 Fully simplify each of the follos 1. \( (2 x+y)\left(3 x^{2}+2 x y+5 y^{2}\right) \) 3. \( (x-y)(3 x-2 x y+4) \) 5. \( (7 m-3 n)\left(5 m^{2}-2 m n-7 n^{2}\right) \) 7. \( (2 x-y)\left(4 x^{2}+2 x y-y^{2}\right) \) 9. \( (4 m-n)\left(2 m^{2}-3 m n-n^{2}\right) \) 11. \( (2 x-y)(2 x+y)(3 x-5 x y-y \) 13. \( (9 m-n)\left(3 m^{2}-m n+2 n^{2}\right) \) Cket \( 15.5(a-b)\left(a^{2}+a b+b^{2}\right) \) 17. \( 2(3 p+q)\left(9 p^{2}-3 p q+q^{2}\right) \) 19. \( 3(2 x+1)\left(x^{2}-5 x-1\right) \)

Ask by King Daniel. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. \( (2x + y)(3x^2 + 2xy + 5y^2) = 6x^3 + 7x^2y + 12xy^2 + 5y^3 \) 2. \( (x - y)(3x - 2xy + 4) = 3x^2 - 2x^2y + 4x - 3xy + 2y^2x - 4y \) 3. \( (7m - 3n)(5m^2 - 2mn - 7n^2) = 35m^3 - 29m^2n - 43mn^2 + 21n^3 \) 4. \( (2x - y)(4x^2 + 2xy - y^2) = 8x^3 - 4xy^2 + y^3 \) 5. \( (4m - n)(2m^2 - 3mn - n^2) = 8m^3 - 14m^2n - mn^2 + n^3 \) 6. \( (2x - y)(2x + y)(3x - 5xy - y) = 12x^3 - 20x^3y - 4x^2y - 3y^2x + 5y^3x + y^3 \) 7. \( (9m - n)(3m^2 - mn + 2n^2) = 27m^3 - 12m^2n + 19mn^2 - 2n^3 \) 8. \( 15.5(a - b)(a^2 + ab + b^2) = \frac{31}{2}a^3 - \frac{31}{2}b^3 \) 9. \( 2(3p + q)(9p^2 - 3pq + q^2) = 54p^3 + 2q^3 \) 10. \( 3(2x + 1)(x^2 - 5x - 1) = 6x^3 - 27x^2 - 21x - 3 \)

Solución

Simplify the expression by following steps: - step0: Calculate: \(2\left(3p+q\right)\left(9p^{2}-3pq+q^{2}\right)\) - step1: Simplify the product: \(2\left(27p^{3}+q^{3}\right)\) - step2: Calculate: \(54p^{3}+2q^{3}\) Expand the expression \( 15.5(a-b)(a^{2}+a b+b^{2}) \) Simplify the expression by following steps: - step0: Calculate: \(15.5\left(a-b\right)\left(a^{2}+ab+b^{2}\right)\) - step1: Multiply the terms: \(\left(15.5a-15.5b\right)\left(a^{2}+ab+b^{2}\right)\) - step2: Factor the expression: \(\frac{31}{2}\left(a-b\right)\left(a^{2}+ab+b^{2}\right)\) - step3: Simplify the product: \(\frac{31}{2}\left(a^{3}-b^{3}\right)\) - step4: Calculate: \(\frac{31}{2}a^{3}-\frac{31}{2}b^{3}\) Expand the expression \( (x-y)(3 x-2 x y+4) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(x-y\right)\left(3x-2xy+4\right)\) - step1: Apply the distributive property: \(x\times 3x-x\times 2xy+x\times 4-y\times 3x-\left(-y\times 2xy\right)-y\times 4\) - step2: Multiply the terms: \(3x^{2}-2x^{2}y+4x-3yx-\left(-2y^{2}x\right)-4y\) - step3: Remove the parentheses: \(3x^{2}-2x^{2}y+4x-3yx+2y^{2}x-4y\) Expand the expression \( (4 m-n)(2 m^{2}-3 m n-n^{2}) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(4m-n\right)\left(2m^{2}-3mn-n^{2}\right)\) - step1: Apply the distributive property: \(4m\times 2m^{2}-4m\times 3mn-4mn^{2}-n\times 2m^{2}-\left(-n\times 3mn\right)-\left(-n\times n^{2}\right)\) - step2: Multiply the terms: \(8m^{3}-12m^{2}n-4mn^{2}-2nm^{2}-\left(-3n^{2}m\right)-\left(-n^{3}\right)\) - step3: Remove the parentheses: \(8m^{3}-12m^{2}n-4mn^{2}-2nm^{2}+3n^{2}m+n^{3}\) - step4: Subtract the terms: \(8m^{3}-14m^{2}n-mn^{2}+n^{3}\) Expand the expression \( (9 m-n)(3 m^{2}-m n+2 n^{2}) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(9m-n\right)\left(3m^{2}-mn+2n^{2}\right)\) - step1: Apply the distributive property: \(9m\times 3m^{2}-9m\times mn+9m\times 2n^{2}-n\times 3m^{2}-\left(-nmn\right)-n\times 2n^{2}\) - step2: Multiply the terms: \(27m^{3}-9m^{2}n+18mn^{2}-3nm^{2}-\left(-n^{2}m\right)-2n^{3}\) - step3: Remove the parentheses: \(27m^{3}-9m^{2}n+18mn^{2}-3nm^{2}+n^{2}m-2n^{3}\) - step4: Subtract the terms: \(27m^{3}-12m^{2}n+19mn^{2}-2n^{3}\) Expand the expression \( 3(2 x+1)(x^{2}-5 x-1) \) Simplify the expression by following steps: - step0: Calculate: \(3\left(2x+1\right)\left(x^{2}-5x-1\right)\) - step1: Multiply the terms: \(\left(6x+3\right)\left(x^{2}-5x-1\right)\) - step2: Apply the distributive property: \(6x\times x^{2}-6x\times 5x-6x\times 1+3x^{2}-3\times 5x-3\times 1\) - step3: Multiply the terms: \(6x^{3}-30x^{2}-6x+3x^{2}-15x-3\) - step4: Add the terms: \(6x^{3}-27x^{2}-21x-3\) Expand the expression \( (2 x-y)(2 x+y)(3 x-5 x y-y) \) Simplify the expression by following steps: - step0: Calculate: \(\left(2x-y\right)\left(2x+y\right)\left(3x-5xy-y\right)\) - step1: Multiply the terms: \(\left(4x^{2}-y^{2}\right)\left(3x-5xy-y\right)\) - step2: Apply the distributive property: \(4x^{2}\times 3x-4x^{2}\times 5xy-4x^{2}y-y^{2}\times 3x-\left(-y^{2}\times 5xy\right)-\left(-y^{2}\times y\right)\) - step3: Multiply the terms: \(12x^{3}-20x^{3}y-4x^{2}y-3y^{2}x-\left(-5y^{3}x\right)-\left(-y^{3}\right)\) - step4: Remove the parentheses: \(12x^{3}-20x^{3}y-4x^{2}y-3y^{2}x+5y^{3}x+y^{3}\) Expand the expression \( (7 m-3 n)(5 m^{2}-2 m n-7 n^{2}) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(7m-3n\right)\left(5m^{2}-2mn-7n^{2}\right)\) - step1: Apply the distributive property: \(7m\times 5m^{2}-7m\times 2mn-7m\times 7n^{2}-3n\times 5m^{2}-\left(-3n\times 2mn\right)-\left(-3n\times 7n^{2}\right)\) - step2: Multiply the terms: \(35m^{3}-14m^{2}n-49mn^{2}-15nm^{2}-\left(-6n^{2}m\right)-\left(-21n^{3}\right)\) - step3: Remove the parentheses: \(35m^{3}-14m^{2}n-49mn^{2}-15nm^{2}+6n^{2}m+21n^{3}\) - step4: Subtract the terms: \(35m^{3}-29m^{2}n-43mn^{2}+21n^{3}\) Expand the expression \( (2 x-y)(4 x^{2}+2 x y-y^{2}) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(2x-y\right)\left(4x^{2}+2xy-y^{2}\right)\) - step1: Apply the distributive property: \(2x\times 4x^{2}+2x\times 2xy-2xy^{2}-y\times 4x^{2}-y\times 2xy-\left(-y\times y^{2}\right)\) - step2: Multiply the terms: \(8x^{3}+4x^{2}y-2xy^{2}-4yx^{2}-2y^{2}x-\left(-y^{3}\right)\) - step3: Remove the parentheses: \(8x^{3}+4x^{2}y-2xy^{2}-4yx^{2}-2y^{2}x+y^{3}\) - step4: Subtract the terms: \(8x^{3}+0-2xy^{2}-2y^{2}x+y^{3}\) - step5: Remove 0: \(8x^{3}-2xy^{2}-2y^{2}x+y^{3}\) - step6: Subtract the terms: \(8x^{3}-4xy^{2}+y^{3}\) Expand the expression \( (2 x+y)(3 x^{2}+2 x y+5 y^{2}) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(2x+y\right)\left(3x^{2}+2xy+5y^{2}\right)\) - step1: Apply the distributive property: \(2x\times 3x^{2}+2x\times 2xy+2x\times 5y^{2}+y\times 3x^{2}+y\times 2xy+y\times 5y^{2}\) - step2: Multiply the terms: \(6x^{3}+4x^{2}y+10xy^{2}+3yx^{2}+2y^{2}x+5y^{3}\) - step3: Add the terms: \(6x^{3}+7x^{2}y+12xy^{2}+5y^{3}\) Here are the fully simplified results for each of the expressions: 1. **Expression:** \( (2 x+y)(3 x^{2}+2 x y+5 y^{2}) \) **Simplified Result:** \( 6x^{3}+7x^{2}y+12xy^{2}+5y^{3} \) 2. **Expression:** \( (x-y)(3 x-2 x y+4) \) **Simplified Result:** \( 3x^{2}-2x^{2}y+4x-3yx+2y^{2}x-4y \) 3. **Expression:** \( (7 m-3 n)(5 m^{2}-2 m n-7 n^{2}) \) **Simplified Result:** \( 35m^{3}-29m^{2}n-43mn^{2}+21n^{3} \) 4. **Expression:** \( (2 x-y)(4 x^{2}+2 x y-y^{2}) \) **Simplified Result:** \( 8x^{3}-4xy^{2}+y^{3} \) 5. **Expression:** \( (4 m-n)(2 m^{2}-3 m n-n^{2}) \) **Simplified Result:** \( 8m^{3}-14m^{2}n-mn^{2}+n^{3} \) 6. **Expression:** \( (2 x-y)(2 x+y)(3 x-5 x y-y) \) **Simplified Result:** \( 12x^{3}-20x^{3}y-4x^{2}y-3y^{2}x+5y^{3}x+y^{3} \) 7. **Expression:** \( (9 m-n)(3 m^{2}-m n+2 n^{2}) \) **Simplified Result:** \( 27m^{3}-12m^{2}n+19mn^{2}-2n^{3} \) 8. **Expression:** \( 15.5(a-b)(a^{2}+a b+b^{2}) \) **Simplified Result:** \( \frac{31}{2}a^{3}-\frac{31}{2}b^{3} \) 9. **Expression:** \( 2(3 p+q)(9 p^{2}-3 p q+q^{2}) \) **Simplified Result:** \( 54p^{3}+2q^{3} \) 10. **Expression:** \( 3(2 x+1)(x^{2}-5 x-1) \) **Simplified Result:** \( 6x^{3}-27x^{2}-21x-3 \) If you need further assistance or explanations for any specific expression, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

When you delve into the world of simplifying expressions, remember that each term has its part to play in the grand performance of mathematics! For instance, the distributive property is your best friend here; it’s like a stage manager ensuring that every actor (term) is in the right place. So break it down step by step, multiply everything out, and watch the magic as like terms combine and simplify beautifully! In many real-world applications, you'll find these algebraic manipulations popping up! From calculating areas and volumes in architecture to optimizing profit functions in business, understanding how to simplify equations allows professionals to make swift and accurate decisions. So every time you're multiplying out terms, you're sharpening a skill that can lead to success in various fields!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad