Write a function in terms of \( t \) that represents the situation. A smartphone costs \( \$ 850 \), and its resell value decreases by \( 11.2 \% \) each year. \( y=850 \times 0.888^{t} \) Basic
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
The function you've written captures the essence of how the smartphone's value declines over time due to depreciation. Each year, the smartphone retains \( 88.8\% \) of its value, represented by the factor \( 0.888 \). To visualize your investment, consider that after 1 year, the value drops to approximately \( \$ 754.80 \), and by the end of the second year, you can expect it to be around \( \$ 670.66 \). If we plug in more values for \( t \), we can see the trend more clearly. For example, at \( t = 3 \), the value shrinks to about \( \$ 594.62 \). This exponential decay function gives you a powerful tool to forecast the resale value of the smartphone effectively throughout its useful lifetime, helping you make smarter buying and selling decisions.