Pregunta
upstudy study bank question image url

Suppose that a ball is thrown from the top of a 64 -foot building. The function models the height in feet, , of the ball seconds after it is thrown.
a) Find the zero(s) of the function. 〔You may use fractions or decimals. Use a comma to separate values, If necessary)
The zero(s) of the function:
b) If we assume that ground level means , when dees the ball hit the ground?
The ball hits the ground after 4
seconds
c) Find the time(s) the ball will be 84 feet above ground. {You may use fractions or decimals. Use a comma to separate values, if necessary}
The ball is 84 feet above ground after 100
feet
d) The ball, will be at its highest point after seconds. Find the height of the ball at that time.
The height of the ball after 1.5 seconds is Select an answer

Ask by Warner Guerrero. in the United States
Mar 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) The zeros of the function are and .
b) The ball hits the ground after seconds.
c) The ball is feet above ground at and seconds.
d) The height of the ball at seconds is feet.

Solución

a) To find the zeros of the function
set :
Multiply both sides by to simplify:
Divide the entire equation by :
Factor the quadratic:
Thus, the solutions are
Since time cannot be negative in this context, the meaningful zero is at seconds. However, listing the zeros as requested:
b) When the ball hits the ground, . From part (a), this occurs at seconds (ignoring the negative solution). Therefore, the ball hits the ground at
c) To find the time(s) when the ball is feet above ground, set :
Subtract from both sides:
Multiply through by :
Divide the entire equation by :
Use the quadratic formula:
with :
Since , we have:
This gives two solutions:
Thus, the ball is feet above ground at
d) The ball reaches its highest point at seconds. Substitute into :
First, calculate :
Then,
So,
The height of the ball at seconds is

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

When analyzing the trajectory of a projectile like our ball thrown off a building, it’s essential to understand the concept of parabolas in physics and mathematics. The function you’ve got, , forms a downward-facing parabola due to the negative coefficient of . The peak (or vertex) of this parabola is where the ball reaches its maximum height, which can be found using the formula where and are the coefficients from your function.
Diving deeper, the real-world application of quadratic functions like this can be seen in various sports! When athletes throw balls, launch javelins, or kick soccer balls, they follow parabolic paths - which means physics, trigonometry, and a touch of calculus all come into play to optimize their throws or kicks for maximum distance or height. Understanding how to calculate these trajectories can give athletes invaluable insights into their performance!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad