The area of a rectangle is \( 2 x^{2}-11 x+15 \) square units. What are the dimensions of the length and width?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the dimensions of the rectangle, we first need to factor the expression for the area, \( 2x^{2} - 11x + 15 \). We can start by looking for two numbers that multiply to \( 2 \times 15 = 30 \) and add up to \( -11 \). The numbers \( -5 \) and \( -6 \) do the trick! We can rewrite the quadratic as \( 2x^{2} - 5x - 6x + 15 \) and then factor by grouping. This gives us: \[ (x - 3)(2x - 5) \] Thus, the dimensions of the rectangle are \( x - 3 \) units (width) and \( 2x - 5 \) units (length). To ensure you get the right values, double-check that both expressions are positive for the dimensions to make sense. For instance, setting \( x - 3 > 0 \) gives \( x > 3 \) and ensuring \( 2x - 5 > 0 \) gives \( x > 2.5 \). Hence, just make sure \( x \) is larger than 3 for valid rectangle dimensions!