Perform the indicated operation, if possible. \( \left[\begin{array}{rr}9 & -3 \\ -9 & -2\end{array}\right]\left[\begin{array}{rr}0 & 7 \\ -4 & -7\end{array}\right] \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To perform the matrix multiplication, we calculate the product of the two matrices: Let's denote matrix A as: \[ A = \left[\begin{array}{rr}9 & -3 \\ -9 & -2\end{array}\right] \] and matrix B as: \[ B = \left[\begin{array}{rr}0 & 7 \\ -4 & -7\end{array}\right] \] The resulting matrix C will be computed as follows: \[ C = A \times B = \left[\begin{array}{rr}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right] \] Where: - \(C_{11} = (9 \cdot 0) + (-3 \cdot -4) = 0 + 12 = 12\) - \(C_{12} = (9 \cdot 7) + (-3 \cdot -7) = 63 + 21 = 84\) - \(C_{21} = (-9 \cdot 0) + (-2 \cdot -4) = 0 + 8 = 8\) - \(C_{22} = (-9 \cdot 7) + (-2 \cdot -7) = -63 + 14 = -49\) Putting it all together, we have: \[ C = \left[\begin{array}{rr}12 & 84 \\ 8 & -49\end{array}\right] \] So the final result of the matrix multiplication is: \[ \left[\begin{array}{rr}12 & 84 \\ 8 & -49\end{array}\right] \]